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We perform a linearized local stability analysis for short-wavelength perturbations of
a circular Couette flow with a radial temperature gradient. Axisymmetric and non-
axisymmetric perturbations are considered and both the thermal diffusivity and the
kinematic viscosity of the fluid are taken into account. The effect of asymmetry of
the heating both on centrifugally unstable flows and on the onset of instabilities of
centrifugally stable flows, including flows with a Keplerian shear profile, is thoroughly
investigated. It is found that an inward temperature gradient destabilizes the Rayleigh-
stable flow either via Hopf bifurcation if the liquid is a very good heat conductor or
via steady state bifurcation if viscosity prevails over the thermal conductance.
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1. Introduction

Circular Couette flow of a viscous Newtonian fluid between two coaxial
differentially rotating cylinders is a canonical system for modelling instabilities
leading to spatio-temporal patterns and transition to turbulence in many natural
and industrial processes. Modern astrophysical applications require understanding of
basic instability mechanisms in rotating flows with the Keplerian shear profile in
accretion- and protoplanetary disks that are hydrodynamically stable according to
the centrifugal Rayleigh criterion. Usually, these instabilities are a consequence of
additional factors such as electrical conductivity of the fluid and the magnetic field
of the central gravitating object (Chandrasekhar 1961; Lifshitz 1987; Friedlander
& Vishik 1995; Urpin & Brandenburg 1998; Kucherenko & Kryvko 2013; Kirillov,
Stefani & Fukumoto 2014; Child, Kersalé & Hollerbach 2015; Balbus & Potter
2016). However, in the so-called ‘dead-zones’ of protoplanetary disks that are
characterized by high electrical resistivity due to very low ionization levels, some
magnetohydrodynamic (MHD) instabilities become inefficient (e.g. the standard
Velikhov–Chandrasekhar magnetorotational instability (MRI) in an axial magnetic
field). Alternative mechanisms include MRIs caused by azimuthal or helical magnetic
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fields that work well also in the inductionless limit at a very low conductivity
(Kirillov & Stefani 2013; Kirillov et al. 2014) as well as pure hydrodynamic
finite-amplitude nonlinear instabilities (Marcus et al. 2013). Some recent studies
indicated a possibility that Keplerian disks with strong mean radial temperature
gradients can support the so-called Goldreich–Schubert–Fricke (GSF) instability,
which is the instability of short-radial-wavelength inertial modes (Economides &
Moir 1980; Urpin & Brandenburg 1998; Nelson, Gressel & Umurhan 2013; Balbus &
Potter 2016). These astrophysical implications renewed interest in the effect of radial
temperature gradients on the stability of circular Couette flow and its observation in
the laboratory (Yoshikawa, Nagata & Mutabazi 2013; Meyer, Yoshikawa & Mutabazi
2015).

Typically, instabilities in circular Couette flow are studied numerically, for instance,
via normal mode analysis or direct numerical simulations. An alternative technique
developed in the literature (Eckhoff 1981; Lifshitz 1987; Lifschitz 1991; Lifschitz
& Hameiri 1991; Dobrokhotov & Shafarevich 1992; Lifschitz & Hameiri 1993;
Eckhardt & Yao 1995; Friedlander & Vishik 1995) is based on perturbations of
a background flow in a small parameter, representing a short wavelength, as in
geometric optics (Lifschitz, Suters & Beale 1996). These perturbations are localized
wave envelopes moving along the trajectories of fluid elements. The flow is unstable
if the amplitude of the envelope demonstrates an unbounded growth in time along at
least one trajectory.

The geometric optics stability analysis requires the representation of the solution
to the governing equations linearized about the background flow as a generalized
progressive wave expansion (Eckhoff 1981). Since the leading-order term in this
expansion dominates the solution for a sufficiently long time, provided that the
short-wavelength parameter is small enough, it is sufficient for detecting instability
to determine the growth rate of the lowest-order amplitude (Eckhoff 1981; Lifschitz
1991). The growth rates are given by the real parts of the roots of the dispersion
relation of the linear transport equation for the lowest-order amplitude that depends
on the wave vector of the perturbation. The wave vector evolves along a stream line
of the flow and this evolution is governed by an eikonal equation. The stream line
passing through a particular point fulfils a corresponding trajectory equation. Thus,
detecting instabilities localized near a particular fluid element location, moving with
the flow, reduces to solving a system of ordinary differential equations for the wave
vector and amplitude, along particle paths in the underlying flow, with coefficients
depending on the unperturbed velocity field (Lifschitz et al. 1996).

The geometric optics stability analysis has proved successful in solving problems
of ideal hydrodynamics and magnetohydrodynamics related to the stability of rotating
flows of an incompressible fluid (Eckhoff 1981; Lifshitz 1987; Lifschitz 1991;
Lifschitz & Hameiri 1991, 1993; Friedlander & Vishik 1995; Lifschitz et al. 1996;
Kucherenko & Kryvko 2013). It was extended to the viscous and resistive cases in
Lifschitz (1991), Dobrokhotov & Shafarevich (1992), Eckhardt & Yao (1995), Kirillov
(2013), Kirillov et al. (2014), Allilueva & Shafarevich (2015). In particular, this
technique allowed one to find analytically neutral stability surfaces in the parameter
space, the frequencies of the unstable modes and their growth rates, that agreed well
with the numerical simulations (Eckhardt & Yao 1995; Lifschitz et al. 1996; Kirillov
et al. 2014; Child et al. 2015; Stefani & Kirillov 2015).

In this paper we apply the geometric optics stability analysis to circular Couette
flow of a viscous Newtonian fluid with a temperature gradient in the absence of
gravity, but retaining the term of the centrifugal buoyancy. We derive a system of
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Instabilities of a circular Couette flow with radial temperature gradient 321

characteristic equations that includes the transport equations for the lowest-order
amplitude of the envelope of the localized perturbation and find a dispersion relation
that takes into account the radial variation of the angular velocity and the temperature
as well as the kinematic viscosity and the thermal diffusivity.

Using algebraic stability criteria for localization of the roots of polynomials
in the left half of the complex plane, we obtain two stability conditions in
compact and explicit form; one of them generalizes the Rayleigh discriminant
for stationary axisymmetric instabilities to include viscosity effects, and the other
provides a marginal stability curve in the parameter plane for oscillatory instabilities.
Codimension-2 points on the marginal stability thresholds are identified and the
growth rates and frequencies of the instabilities are found analytically. The theoretical
results are applied to cylindrical Couette flow with the parameters evaluated at the
geometric mean radius both in the Rayleigh unstable and in the Rayleigh stable
regimes. In the case of a sole inner cylinder rotating we confirm and extend the
numerical results of Meyer et al. (2015) and provide analytical expressions for the
onset of oscillatory and stationary instabilities, the coordinates of the codimension-2
points, and the Hopf frequency. In the case of a sole outer cylinder rotation, solid
body rotation, and rotating flow with Keplerian shear we find a destabilizing effect
of the inward temperature gradient that leads to oscillatory instability at small values
of the Prandtl number (Pr< 1) and to stationary instability at Pr> 1.

2. Equations of motion
We consider the flow of an incompressible viscous fluid of density ρ, kinematic

viscosity ν and thermal diffusivity κ in the presence of a radial temperature gradient
applied to a differentially rotating cylindrical annulus. The ratio Pr= ν/κ constitutes
the Prandtl number.

The governing equations written in the inertial frame of reference read (Yoshikawa
et al. 2013; Meyer et al. 2015):

∇ · u= 0, (2.1)
∂u
∂t
+ u · ∇u+ 1

ρ
∇p− ν1u+ αθgc = 0, (2.2)

∂θ

∂t
+ u · ∇θ − κ1θ = 0, (2.3)

where p is the pressure and θ is the temperature deviation from a reference
temperature. The parameter α is the coefficient of thermal expansion.

The flow equations are written in cylindrical coordinates (r, ϕ, z) in which the
velocity field u= (u, v, w)T, where the superscript T denotes transposition. The term
u · ∇u contains the centrifugal-like acceleration gc= (v2/r, 0, 0)T and the Coriolis-like
acceleration (0, uv/r, 0)T coming from the geometry. The Oberbeck–Boussinesq
approximation (Chandrasekhar 1961) is used, i.e. we assume small variations of
the density with temperature only in the centrifugal force term leading to the
centrifugal buoyancy while the other fluid properties (ν, κ, α) are kept constant.
This approximation allows one to keep the flow incompressibility condition and
eliminates the acoustic modes from the problem analysis. The application of the
Oberbeck–Boussinesq approximation to rotating flows can be found in Lopez,
Marques & Avila (2013). The gravity g is neglected in order to focus only on
the destabilization effects of the centrifugal buoyancy αθgc.
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We assume that the cylindrical annulus has an infinite length. The system (2.1)–(2.3)
possesses a stationary axisymmetric solution describing the base flow state: uB =
(0, V(r)= rΩ(r), 0)T, pB = P(r), and θB =Θ(r). Consider a perturbation of this base
flow state: u = uB + ũ, p = pB + p̃, and θ = θB + θ̃ . Then the equations of the flow
perturbations linearized around the base flow state read

∇ · ũ= 0, (2.4)
∂ũ
∂t
+ uB · ∇ũ+ ũ · ∇uB − ν1ũ+ 1

ρ
∇p̃+ αθBg̃c + αθ̃gcB = 0, (2.5)

∂θ̃

∂t
+ uB · ∇θ̃ + ũ · ∇θB − κ1θ̃ = 0, (2.6)

with the basic centrifugal gravity gcB = (rΩ2, 0, 0)T and the perturbative centrifugal
gravity g̃c = (2Ωṽ, 0, 0)T so that we can write the centrifugal buoyancy terms as
follows

αθBg̃c = 2ΩαθBereT
ϕũ, (2.7)

αθ̃gcB = αθ̃rΩ2er, (2.8)

where er and eϕ are radial and azimuthal unit vectors, respectively.
The gradients of the background fields are

∇uB =Ω



0 −1 0
1+ 2Ro 0 0

0 0 0


 , ∇θB =




DΘ
0
0


 , (2.9a,b)

where
Ro= rDΩ

2Ω
(2.10)

is the Rossby number and D= d/dr. Denoting U =∇uB, we formulate the linearized
equations of motion in the final form:

∇ · ũ= 0, (2.11)(
∂

∂t
+ U + 2ΩαθBereT

ϕ + uB · ∇

)
ũ− ν1ũ+ 1

ρ
∇p̃+ αrΩ2erθ̃ = 0, (2.12)

(
∂

∂t
+ uB · ∇

)
θ̃ + ũ · ∇θB − κ1θ̃ = 0. (2.13)

3. Evolution of the localized perturbations
Let ε be a small parameter (0 < ε � 1). We are looking for a solution of the

linearized equations (2.11)–(2.13) in the form of the generalized progressive wave
expansions (Eckhoff 1981)

ũ= (u(0)(x, t)+ εu(1)(x, t)
)

exp
(
iε−1Φ(x, t)

)+ εu(r)(x, t, ε), (3.1)

θ̃ = (θ (0)(x, t)+ εθ (1)(x, t)
)

exp
(
iε−1Φ(x, t)

)+ εθ (r)(x, t, ε), (3.2)

p̃= (p(0)(x, t)+ εp(1)(x, t)
)

exp
(
iε−1Φ(x, t)

)+ εp(r)(x, t, ε), (3.3)
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where Φ is generally a complex-valued scalar function that represents the phase of the
wave or the eikonal and the remainder terms u(r), θ (r), p(r) are assumed to be uniformly
bounded in ε on any fixed time interval (Eckhoff 1981; Lifschitz 1991; Lifschitz &
Hameiri 1991, 1993; Lifschitz et al. 1996).

Maslov (1986) observed that high-frequency oscillations exp(iε−1Φ(x, t)) quickly
die out because of viscosity unless one assumes a quadratic dependency of
viscosity on the small parameter ε. Hence, following (Maslov 1986; Dobrokhotov &
Shafarevich 1992; Kirillov et al. 2014; Allilueva & Shafarevich 2015), we assume
that ν = ε2ν̃ and κ = ε2κ̃ .

Substituting the asymptotic series (3.1) into the incompressibility condition (2.11)
and collecting terms at ε−1 and ε0, we find

ε−1 : u(0) · ∇Φ = 0, (3.4)
ε0 : ∇ · u(0) + iu(1) · ∇Φ = 0. (3.5)

A similar procedure applied to (2.12) and (2.13) yields the two systems of equations

ε−1 :



∂Φ

∂t
+ uB · ∇Φ 0

0
∂Φ

∂t
+ uB · ∇Φ



(

u(0)
θ (0)

)
=−∇Φ

ρ

(
p(0)
0

)
, (3.6)

ε0 : i



∂Φ

∂t
+ uB · ∇Φ 0

0
∂Φ

∂t
+ uB · ∇Φ



(

u(1)
θ (1)

)
=−i
∇Φ

ρ

(
p(1)
0

)

−



∂

∂t
+ uB · ∇+ U + ν̃(∇Φ)2 0

0
∂

∂t
+ uB · ∇+ κ̃(∇Φ)2



(

u(0)
θ (0)

)

−
(

2ΩαθBereT
ϕ αrΩ2er

(∇θB)
T 0

)(
u(0)
θ (0)

)
− ∇
ρ

(
p(0)
0

)
. (3.7)

The amplitudes with the superscript (0) are contained both in (3.6) corresponding
to the lowest degree of ε equal to −1 and in (3.7) corresponding to the degree 0.
Therefore, finding the lowest-order amplitudes with the superscript (0) requires an
iterative procedure involving both (3.6) and (3.7).

Taking the dot product of the first of the equations in the system (3.6) with ∇Φ
under the constraint (3.4) we find that for ∇Φ 6= 0

p(0) = 0. (3.8)

Under the condition (3.8) the system (3.6) has a non-trivial solution if the
determinant of the 4 × 4 matrix in its left-hand side is vanishing. This gives us
a 4-fold characteristic root corresponding to the Hamilton–Jacobi equation

∂Φ

∂t
+ uB · ∇Φ = 0, (3.9)

with the initial data: Φ(x, 0)=Φ0(x).
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Taking the gradient of (3.9) yields the eikonal equation (Lifschitz & Hameiri 1991)
(
∂

∂t
+ uB · ∇

)
∇Φ +∇uB · ∇Φ = 0, (3.10)

with the initial condition ∇Φ(x, 0)=∇Φ0(x). In the notation k=∇Φ and (d/dt)=
(∂/∂t)+ uB · ∇ the eikonal equation (3.10) is (Lifschitz 1991)

dk
dt
=−∇uB · k=−UTk, (3.11)

where UT denotes the transposed 3× 3 matrix U (Eckhardt & Yao 1995).
Relations (3.8) and (3.9) allow us to reduce the system (3.7) to

(
d
dt
+ U + ν̃(∇Φ)2 + 2αΩθBereT

ϕ

)
u(0) + αrΩ2erθ

(0) =− i∇Φ
ρ

p(1), (3.12)

(∇θB)
Tu(0) +

(
d
dt
+ κ̃(∇Φ)2

)
θ (0) = 0. (3.13)

Multiplying (3.12) with ∇Φ from the left, we isolate the pressure term

p(1) = iρ
∇Φ

(∇Φ)2
·

([
d
dt
+ U + 2αΩθBereT

ϕ

]
u(0) + αrΩ2erθ

(0)

)
. (3.14)

Taking into account the identity (Lifschitz & Hameiri 1991; Kirillov et al. 2014)

d
dt
(∇Φ · u(0))= d∇Φ

dt
· u(0) +∇Φ · du(0)

dt
= 0 (3.15)

we modify (3.14) in the following way

p(1) = iρ
∇Φ

(∇Φ)2
·
(
(U + 2αΩθBereT

ϕ)u
(0) + αrΩ2erθ

(0)
)− iρ

1
(∇Φ)2

d∇Φ
dt
· u(0). (3.16)

Now using (3.11) we re-write (3.16) in terms of the wave vector k

p(1) = 2iραΩθB
kTereT

ϕ

|k|2 u(0) + iραrΩ2 kTer

|k|2 θ
(0) + 2iρ

kTU
|k|2 u(0). (3.17)

Substituting (3.17) into (3.12) we finally arrive at the transport equations for the
leading-order amplitudes u(0) and θ (0) in the expansions (3.1) and (3.2):

du(0)

dt
= −ν̃|k|2u(0) −

(
I − 2

kkT

|k|2
)
Uu(0) − 2αΩθB

(
I − kkT

|k|2
)

ereT
ϕu(0)

−αrΩ2

(
I − kkT

|k|2
)

erθ
(0), (3.18)

dθ (0)

dt
=−κ̃|k|2θ (0) − (∇θB)

Tu(0), (3.19)

with I the 3× 3 identity matrix and the initial data u(0)(x, 0)=u(0)0 (x) and θ (0)(x, 0)=
θ
(0)
0 (x).
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Note that the leading-order terms dominate the solution (3.1) and (3.2) for a
sufficiently long time, provided that ε is small enough (Lifschitz 1991; Lifschitz
et al. 1996), which reduces analysis of instabilities to the investigation of the growth
rates of solutions of the transport equations (3.18) and (3.19).

Let us consider a fluid element with the trajectory passing through a point x0 at the
initial moment t= 0 :

dx
dt
= uB, x(0)= x0. (3.20a,b)

Then, the eikonal equation (3.11) can be interpreted as an ordinary differential
equation describing the evolution of the wave vector k(t) = ∇Φ(x(t), t) along the
stream line (3.20) with the initial condition k(0) = k0 = ∇Φ0(x0). Consequently, the
transport equations (3.18) and (3.19) can also be treated as a system of ODEs along
the stream lines of the flow for the amplitudes u(0)(x(t), t) and θ (0)(x(t), t) with
the initial data u(0)(0) = u(0)0 (x0) and θ (0)(0) = θ (0)0 (x0). Therefore, the characteristic
equations (3.20), (3.11), (3.18) and (3.19) describe motion of the envelope of a
perturbation localized at the initial moment of time at x0 along with the particles in
the fluid flow that pass through x0 at t= 0.

4. Dispersion relation and its parameterizations

Following the procedure described in Friedlander & Vishik (1995) we write the
eikonal equation (3.11) in cylindrical coordinates r, ϕ, z

∂k
∂t
=



0 −2ΩRo 0
0 0 0
0 0 0


 k(t) (4.1)

and consider the bounded, and asymptotically non-decaying and non-diverging solution
of (4.1) with kr = const., kϕ = 0, and kz = const. (Eckhardt & Yao 1995; Friedlander
& Vishik 1995). With this, we can write the amplitude transport equations (3.18) in
coordinate form as

[
∂

∂t
+Ω ∂

∂ϕ
+ ν̃|k|2

]
u(0)r = β2

[
2Ω(1− αθB)u(0)ϕ − αrΩ2θ (0)

]
, (4.2)

[
∂

∂t
+Ω ∂

∂ϕ
+ ν̃|k|2

]
u(0)ϕ =−2Ω(1+ Ro)u(0)r , (4.3)

[
∂

∂t
+Ω ∂

∂ϕ
+ κ̃|k|2

]
θ (0) =−DΘu(0)r , (4.4)

[
∂

∂t
+Ω ∂

∂ϕ
+ ν̃|k|2

]
u(0)z =−β2 kr

kz

[
2Ω(1− αθB)u(0)ϕ − αrΩ2θ (0)

]
, (4.5)

where β = kz|k|−1 and |k| =√k2
r + k2

z .
We see that (4.2)–(4.4) form a closed sub-system with respect to u(0)r , u(0)ϕ and

θ (0). Indeed, the transformation u(0)z → (−kr/kz)u(0)r makes (4.5) equivalent to (4.2).
Following (Friedlander & Vishik 1995) we will look for a solution to this sub-system
in the modal form as θ (0)= θ̂eλt+imϕ , and write the amplitude equations in the matrix
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326 O. N. Kirillov and I. Mutabazi

form Hξ = λξ , where ξ = (ûr, ûϕ, θ̂ )T is the eigenvector associated with the eigenvalue
λ of the matrix (cf. (A 19) that is obtained in the narrow-gap approximation)

H =


−imΩ − ν̃|k|2 2Ωβ2(1− αΘ) −αrΩ2β2

−2Ω(1+ Ro) −imΩ − ν̃|k|2 0
−DΘ 0 −imΩ − κ̃|k|2


 . (4.6)

The solvability condition for a non-trivial solution yields the dispersion relation

p(λ)= det(H − λI)= 0, (4.7)

where I is the 3× 3-unit matrix. (Note that a similar dispersion relation was derived
also in Economides & Moir (1980) in the case when the radial acceleration g does
not depend on r (see appendix A). In our case g(r)= gcB = (rΩ2, 0, 0)T.)

Let us introduce the non-dimensional parameters

Ta= βΩ

ν̃|k|2 , Θ̂ = Θ

1T
, γa = α1T, Rt= rDΘ

2Θ
, n= m

β
, s= λ

βΩ
, (4.8a−f )

where Ta is the Taylor number, Rt is the thermal analogue of the Rossby number
and measures the local slope of the temperature profile (not to be confused with
the thermal Rossby number used in atmospheric physics (Lappa 2012)), 1T is the
temperature difference imposed at the cylindrical surfaces bounding the flow, Θ̂
represents the dimensionless temperature, n is a modified azimuthal wavenumber, and
s is a dimensionless eigenvalue. Introducing the diagonal matrix R= diag(1, 1,1T/r),
we transform (4.6) into

R−1HR = βΩ




−in− 1
Ta

2β(1− γaΘ̂) −γaβΩ

− 2
β
(1+ Ro) −in− 1

Ta
0

−2Θ̂Rt
1
βΩ

0 −in− 1
TaPr




(4.9)

and re-write the dispersion relation (4.7) in the equivalent form

det(R−1HR − sβΩ I)=−β3Ω3q(s)= 0, (4.10)

where q(s) is a third-degree polynomial with complex coefficients that does not
contain the parameters β and Ω and depends entirely on the dimensionless control
parameters Ta, Pr, Θ̂ , γa, n and on the logarithmic derivatives of the velocity and
temperature profiles of the base flow represented by the dimensionless hydrodynamic
and thermal Rossby numbers Ro and Rt, respectively.

Introducing the new spectral variable χ = s+ in into the complex dispersion relation
q(s)= 0, we transform it into a real third-degree polynomial equation in χ :

χ 3 + a2χ
2 + a1χ + a0 = 0. (4.11)

The real coefficients ai of the characteristic polynomial (4.11) depend on the
dimensionless flow parameters as follows:

a0 = 1
Ta

[
1

PrTa2 +
4(1+ Ro)(1− γaΘ̂)

Pr
− 2γaΘ̂Rt

]
, (4.12)
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Rotation case Ro PrS PrH

Inner cylinder − 1
1− η −4η ln η

1− η
(

1
γa
− 1

2

)
−
[

1+ 8η ln η
1− η

(
1
γa
− 1

2

)]−1

Outer cylinder
η

1− η
4 ln η
1− η

(
1
γa
− 1

2

)
−
[

1− 8 ln η
1− η

(
1
γa
− 1

2

)]−1

Keplerian −1+√η+ η
(1+√η)2

4
√
η ln η

(1+√η)2
(

1
γa
− 1

2

)
−
[

1− 8
√
η ln η

(1+√η)2
(

1
γa
− 1

2

)]−1

Solid body 0 4 ln η
(

1
γa
− 1

2

)
−
[

1− 8 ln η
(

1
γa
− 1

2

)]−1

TABLE 1. Rossby numbers for different rotating cases of the Couette–Taylor system
according to (4.16) and the corresponding asymptotic values (6.4) and (6.10) that bound
the intervals of Pr at which stationary (PrS) and oscillatory (PrH) modes are admissible.

a1 = 4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt+ Pr+ 2
PrTa2 , (4.13)

a2 = 2Pr+ 1
TaPr

. (4.14)

The set of dimensionless parameters (4.8) is convenient for applications in
astrophysical gasdynamics (Acheson & Gibbons 1978; Balbus & Potter 2016). In
order to facilitate comparison with the experimental data we need to express these
parameters in terms of the realistic Taylor–Couette system. In this case, the base flow
state confined in the gap between two coaxial cylinders of radii a and b rotating with
the angular frequencies Ωa and Ωb, respectively, is given by (Chandrasekhar 1961;
Ali & Weidman 1990; Meyer et al. 2015)

Ω = µ− η
2

1− η2
+ 1−µ

1− η2

η2

(1− η)2
1
r2
, Θ̂ = ln(1− η)r

ln η
, (4.15a,b)

where η= a/b< 1 is the radius ratio and µ=Ωb/Ωa is the rotation ratio. The angular
velocity is measured in units of Ωa and the radial distance in units of d= b− a.

Evaluating the parameters (2.10), (4.8) and (4.15) at the geometric mean radius rg=√
η/(1− η) (as proposed by Dubrulle et al. (2005)), we find (in the case of counter-

rotating cylinders, the hydrodynamic Rossby number diverges at µ=−η; for µ6−η,
one may choose the geometric mean radius of the potentially unstable zone)

Θ̂ = 1
2
, Rt= 1

ln η
, Ro=−1+ µ− η2

(1− η)(η+µ). (4.16a−c)

Relations (4.16) allow us to interpret the local Rossby numbers Ro and Rt in terms
of the radius and velocity ratios η and µ of the realistic Taylor–Couette cell, see
table 1 containing the four different rotation cases: sole rotation of the inner cylinder
(µ = 0), Keplerian rotation (µ = η3/2), sole rotation of the outer cylinder (µ→∞),
and solid body rotation (µ= 1). In particular, Rt < 0 for the Taylor–Couette system
due to the geometric constraint 0< η < 1 and the temperature variation is such that
0 6 Θ̂ 6 1.
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5. Local instabilities
5.1. Diffusionless instabilities

In the case when the viscosity and thermal diffusivity are both set to zero in (4.6) or,
equivalently, Ta→∞ in (4.9), the dispersion relation (4.11) factorizes to

χ(χ 2 + 4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt)= 0. (5.1)

The root χ = 0 corresponds to the pure imaginary eigenvalue λ = βΩs = −imΩ
describing a stable rotating wave with the local frequency Ω . Similarly, the flow
admits stable inertial waves with frequencies given by

ω

Ω
=−m± β

√
4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt, (5.2)

if the radicand in (5.2) is positive:

4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt> 0. (5.3)

These inertial waves result from the combined effects of the rotation and the
temperature gradient. While the term γaΘ̂ is very weak in the Boussinesq approxi-
mation, the term γaΘ̂Rt can become significant depending on the steepness of the
temperature profile. In the isothermal case (γa = 0), we retrieve the frequency of the
Kelvin waves in rotating flows.

The inequality (5.3) contains the generalized Rayleigh criterion derived in
Mutabazi & Bahloul (2002) and Meyer et al. (2015) for the stability of inviscid
flow with curved streamlines and a radial temperature gradient. Indeed, Mutabazi
& Bahloul (2002) and Meyer et al. (2015) found the criterion for stability against
axisymmetric perturbations in the diffusionless case in terms of the generalized
Rayleigh discriminant Ψ (r):

Ψ (r) > 0, Ψ (r)=Φ − γa

(
Θ̂Φ + dΘ̂

dr
V2

r

)
, Φ(r)= 1

r3

d(rV)2

dr
. (5.4a−c)

Expressing the classical hydrodynamic Rayleigh discriminant Φ(r) via the
hydrodynamic Rossby number as Φ = 4Ω2(1+ Ro), we obtain

Ψ =Ω2{4(1+ Ro)− 2γaΘ̂[Rt+ 2(1+ Ro)]}. (5.5)

Requiring Ψ > 0 we arrive exactly at the criterion (5.3). The opposite inequality
Ψ < 0 or 4(1 + Ro)(1 − γaΘ̂) − 2γaΘ̂Rt < 0 coincides with the condition for
instability to stationary axisymmetric perturbations known as the diffusionless
Goldreich–Schubert–Fricke (GSF) instability (Acheson & Gibbons 1978).

5.2. Enhancement of stability by viscosity and thermal diffusivity at Pr= 1
In the case when Pr = 1 (i.e. when the viscous and thermal diffusion timescales are
equal) the dispersion relation (4.11) can also be factorized:

(
χ + 1

Ta

)[(
χ + 1

Ta

)2

+ 4(1− γaΘ̂)(1+ Ro)− 2γaΘ̂Rt

]
= 0. (5.6)
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By this reasoning, the roots of the dispersion relation (5.6) can be found explicitly:

s1,2 =− 1
Ta
− in± i

√
4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt, (5.7)

s3 =− 1
Ta
− in. (5.8)

The mode with the eigenvalue s3 is a pure hydrodynamic mode as it does not contain
the temperature gradient, it is damped by the viscosity. The modes corresponding
to the eigenvalue s1,2 contain both the hydrodynamic and thermal effects. One of
the modes is always damped, the other one should be excited when its growth rate
vanishes, i.e. when

4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂Rt+ 1
Ta2 = 0. (5.9)

The double-diffusive stability criterion given by the requirement for the left-hand
side of (5.9) to be positive suggests that at Pr = 1 the viscosity and thermal
diffusivity enlarge the stability domain of the diffusionless system. Furthermore,
in the limit Ta→∞ the roots (5.7) and (5.8) reduce to the roots of the diffusionless
dispersion relation (5.1), whereas the double-diffusive stability criterion reduces to
the diffusionless criterion (5.3).

Note that the limiting procedure that first makes the diffusion coefficients of a
dissipative system with two diffusion mechanisms equal and then tends them to zero
typically yields a correct diffusionless stability criterion in many double-diffusive
systems of hydrodynamics and magnetohydrodynamics (Kirillov et al. 2014; Kirillov
2016). In general, the limit of zero dissipation of the double-diffusive stability criteria
should not necessarily coincide with the diffusionless stability criteria (Acheson &
Gibbons 1978; Kirillov & Verhulst 2010; Kirillov 2013).

5.3. Double-diffusive flow stability criteria at arbitrary Pr
We derive stability conditions of the base flow at arbitrary Pr by applying the Lienard–
Chipart stability criterion (Kirillov 2013) to the real polynomial (4.11) of degree 3
in χ :

a0 > 0, a2 > 0, −a0(a0 − a1a2) > 0. (5.10a−c)

The second inequality is always fulfilled whereas the first one yields:

4(1+ Ro)(1− γaΘ̂)− 2γaΘ̂RtPr+ 1
Ta2 > 0. (5.11)

The condition (5.11) is a modified Rayleigh criterion that takes into account both the
kinematic viscosity and the thermal diffusion. Writing it as

1+ Ro>
2γaΘ̂ RtPr

4(1− γaΘ̂)
− 1

4Ta2(1− γaΘ̂)
, (5.12)

we conclude that, for Rt < 0 and 0 6 Θ̂ 6 1, the kinematic viscosity and outward
heating (γa > 0) are stabilizing and inward heating (γa < 0) is destabilizing with
respect to the Rayleigh criterion (1+ Ro> 0) for an ideal incompressible fluid.
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At Pr= 1 the condition (5.11) reduces to the criterion (5.9). Furthermore, the limit
Ta→∞ applied to (5.11) yields the diffusionless criterion (5.3) only if Pr= 1.

The condition a0 = 0 yields the control parameter Ta as a function of the other
control parameters:

TaS
c =

1√
2γaΘ̂RtPr− 4(1+ Ro)(1− γaΘ̂)

. (5.13)

Since at a0 = 0 the dispersion equation (4.11) has the root χ = 0, corresponding
to s = −in, the relation (5.13) is the threshold of the double-diffusive Goldreich–
Schubert–Fricke instability (Acheson & Gibbons 1978), which is a stationary
axisymmetric instability in the case when n= 0.

The third inequality of (5.10) yields

−
(
γaΘ̂(Pr+ 1)Rt− 4Pr(1− γaΘ̂)(1+ Ro)− (Pr+ 1)2

PrTa2

)
> 0, (5.14)

from which the threshold of the oscillatory instability through a Hopf bifurcation
naturally follows:

TaH
c =

Pr+ 1√
Pr(Pr+ 1)γaΘ̂Rt− 4Pr2(1− γaΘ̂)(1+ Ro)

. (5.15)

Indeed, from the Vieta’s formulas (Vinberg 2003)

χ1 + χ2 + χ3 =−a2, χ1χ2 + χ2χ3 + χ3χ1 = a1, χ1χ2χ3 =−a0 (5.16a−c)

it follows that at Ta = TaH
c the characteristic equation (4.11) admits two imaginary

roots χ1,2 =±iω̄c, corresponding to s=−in± iω̄c, where n can be either zero or not,
and one real root χ3 =−a2. The real root corresponds to a damped mode while the
imaginary roots yield the Hopf frequency ω̄c given by

ω̄c =
√

4(1+ Ro)(1− γaΘ̂)− γaΘ̂RtPr(Pr+ 1)

Pr+ 1
(5.17)

and describe a marginal oscillatory mode. The total frequency of this marginal mode
is given by ωc = −βΩ(n ± ω̄c). The marginal value TaH

c corresponds to a Hopf
bifurcation of the base flow to a state oscillating with a Hopf frequency ω̄c. For
n= 0, the marginal mode is an oscillatory axisymmetric mode, while for n 6= 0, the
marginal mode is an oscillatory non-axisymmetric mode.

5.4. Codimension-2 points in the case of the Rayleigh-unstable flows
In the parameter space, the boundary of the stationary instability (5.13), corresponding
to a simple zero root, and the boundary of the Hopf bifurcation (5.15), corresponding
to a pair of imaginary roots, may have common codimension-2 points with the
coordinates (Pr∗, Ta∗) given for Ro+ 1< 0 and γa > 0 by

Pr∗ =−1
2
+ 1

2

√
1+ 16

(1− γaΘ̂)

γaΘ̂

(1+ Ro)
Rt

, (5.18)

Ta∗ = 1√
2γaΘ̂RtPr∗ − 4(1− γaΘ̂)(1+ Ro)

. (5.19)
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5.5. The Rayleigh line
In the particular case Ro = −1, corresponding to the Rayleigh line, the roots of the
dispersion relation are found explicitly for an arbitrary Pr:

χ1,2 =−Pr+ 1
2TaPr

±
√

2RtΘ̂γa + (Pr− 1)2

4Ta2Pr2 , χ3 =− 1
Ta
. (5.20a,b)

One of the first two roots vanishes at the threshold of stationary instability Ta= TaS
c ,

where (γa < 0, Rt< 0)

TaS
c =

1√
2γaΘ̂RtPr

. (5.21)

Thus, at the Rayleigh line, stationary instability is possible for inward heating only.
When the heating is outward and Rt<0, both the criteria (5.11) and (5.14) are fulfilled
and the flow is stable.

6. Stationary and oscillatory modes
The relations (5.13) and (5.15) contain, besides Pr, the group of parameters Ro,

γaΘ̂ and γaΘ̂Rt, Rt< 0. Therefore, the conditions for the occurrence of stationary or
oscillatory modes can be analysed in terms of these parameters.

Let us define the Brunt–Väisälä frequency N as Meyer et al. (2015) (these authors
have defined N2 with the opposite sign)

N2 = 1
ρ0
∇ρ · gcB =

1
ρ0

dρ
dr

V2

r
. (6.1)

Taking into account that ρ(r) = ρ0(1 − αθ(r)) in the Boussinesq approximation, we
conclude that N2 =−2γaΘ̂RtΩ2.

In the diffusionless case, for Ro<−1, the flow is Rayleigh unstable, i.e. the radial
stratification of the square of the angular momentum is negative; for Ro > −1, the
flow is Rayleigh stable (Chandrasekhar 1961). The centrifugal acceleration is oriented
away from the rotation axis, implying that outward heating (γa > 0) corresponds to a
stable stratification of the density (N2 > 0) while inward heating (γa < 0) corresponds
to an unstable density stratification, characterized by the negative sign of the squared
Brunt–Väisälä frequency (N2 < 0).

For Rayleigh-stable flow configurations, negative stratification of the density yields
a thermal instability analogue to Rayleigh–Bénard convection, which might lead to
stationary modes at the onset. For Rayleigh-unstable configurations, negative density
stratification enforces the centrifugal instability and decreases the threshold compared
to the isothermal flow; while positive density stratification will delay the threshold
and inertial waves may be excited by the rotation when N2 becomes significant.
These inertial waves, observed in numerical simulations, have been recently reported
in Meyer et al. (2015).

6.1. Stationary modes
Taking into account the relations (4.16) we write the threshold for the onset of
stationary instability (5.13) in terms of the parameters of Couette–Taylor flow

rS = TaS
c

Ta0
=
[

1− γa

2
+ γaPr

ln η
(Ta0)

2

]−1/2

, (6.2)
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FIGURE 1. (Colour online) Rotating inner cylinder with µ = 0, η = 0.99. (a) Stability
diagram at γa = 0.0004 showing the boundaries of stationary instability (6.2) and Hopf
bifurcation (6.6) that have a common codimension-2 point (Pr∗ ≈ 140.55, Ta∗/Ta0 ≈
1.0072) given by (6.8) and (6.9). The black dashed line corresponds to double real roots
χ : χ < 0 in the stability domain, χ > 0 in the instability domain, and χ = 0 at the
codimension-2 point. (b) The critical values of Ta/Ta0 versus γa at Pr≈ 140.55 with the
codimension-2 point (γa = 0.0004, Ta/Ta0 ≈ 1.0072) and the (black dashed) line of real
eigenvalues. (c) Growth rates (Reχ ) at Pr≈ 140.55 and (red) γa=−0.0004, (black) γa= 0,
(green) γa = 0.0004, (dashdot blue) γa = 0.0015.

where we have introduced the threshold for the isothermal flow as follows

TaS
c(γa = 0)= 1

2

√ −1
Ro+ 1

≡ Ta0. (6.3)

For circular Couette flow, the quantity (Ta0)
2 is positive when Ro+ 1< 0 (or µ<η2),

i.e. in the Rayleigh-unstable zone, and (Ta0)
2 < 0 when Ro + 1 > 0, i.e. in

the Rayleigh-stable zone (Chandrasekhar 1961). The explicit expressions for TaS
c

calculated for different rotating regimes of Couette–Taylor flow are given in table 2.
In figure 1 we plot the threshold (6.2) in the Rayleigh-unstable case of the inner

cylinder rotation with µ= 0 and Ro+ 1=−η/(1− η) < 0, see table 1. We see that
the ratio rS < 1, i.e. there is a destabilization, for inward heating (γa < 0), and rS > 1
for outward heating (γa > 0). Note that the threshold of the stationary modes (6.2)
is a function of the parameter Ŝ = −γaPr/ ln η, where |γa| � 1 in the Boussinesq
approximation. This result theoretically justifies the numerical analysis of Meyer et al.
(2015), where it was shown that the stationary critical modes almost scaled with the
temperature drop coefficient S= Ŝη/(1− η).

Stationary modes can exist if the radicand in (5.13) is positive, this yields a
condition on Pr to be satisfied. In the case of Rayleigh-unstable flow, i.e. when
1 + Ro < 0, the stationary modes exist for any value of Pr when γa < 0 and for
0 6 Pr< PrS when γa > 0, where the critical value of the Prandtl number is

PrS = 2(1+ Ro)(1− γaΘ̂)

γaΘ̂Rt
. (6.4)

The values of PrS calculated in terms of the parameters (4.16) for different rotating
cases of the Couette–Taylor system are given in table 1. In the case of the rotating
inner cylinder shown in figure 1(a) the asymptotic value (6.4) for the threshold (6.2)
is PrS ≈ 9948.
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FIGURE 2. (Colour online) Keplerian case with µ= η3/2 and η = 0.99. (a) Variation of
the threshold of the stationary instability and Hopf bifurcation with Pr at γa < 0 (an
inward temperature gradient). The asymptotic values of Pr marked by dot-dashed lines are,
respectively: PrH≈0.0523, PrH≈0.98, PrS≈1.01 and PrS≈10.055. (b) Lines PrS= const.
in the (η, γa)-plane. (c,d) Variation of the frequencies Im(χ) and the growth rates Re(χ)
with Pr at Ta = 6 and γa = −0.01 (an inward temperature gradient). The green lines
correspond to oscillatory modes, and the red lines to stationary modes.

In the case of Rayleigh-stable flows (1 + Ro > 0), the stationary modes are
expected only for inward heating (γa < 0) at Pr > PrS. Figure 2 shows the variation
of the threshold with Pr for Keplerian rotation in the small gap case η = 0.99;
the corresponding stability diagrams for the cases of solid body rotation and outer
cylinder rotation are shown in figure 3.

Note that for the Rayleigh-unstable flows the stationary modes exist even in the
limit of vanishing Prandtl number (Pr → 0), i.e. for highly thermally conducting
liquids with low kinematic viscosity. In this limit, the threshold (5.13) reduces to the
expression

TaS
c =

1√
−4(1+ Ro)(1− γaΘ̂)

. (6.5)
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FIGURE 3. (Colour online) (a) Solid body rotation with µ=1 and η=0.99. Thresholds of
the stationary instability and Hopf bifurcation with the asymptotic values of Pr marked
by dot-dashed lines: PrH ≈ 0.0126, PrH ≈ 0.1412, PrS ≈ 4.0402, and PrS ≈ 40.221. (b)
Outer cylinder rotation with µ=∞ and η= 0.99. Thresholds of the stationary instability
and Hopf bifurcation with the asymptotic values of the Prandtl number: PrH ≈ 0.0012 and
PrS≈ 404.02. (c,d) Variation of the (c) frequencies and (d) growth rates with Pr for outer
cylinder rotation (µ=∞, η= 0.99) at given Ta= 1000 and γa =−0.01. The green lines
correspond to the oscillatory modes and the red line corresponds to a (damped) stationary
mode.

For Rayleigh-stable flows (1+Ro> 0) the threshold of the stationary modes (5.13)
decreases towards zero at γa < 0 in the limit of large values of the Prandtl number
(Pr →∞), i.e. for highly viscous and poorly heat-conducting fluids, see figures 2
and 3.

6.2. Hopf bifurcation
In terms of the parameters (4.16) and (6.3) the threshold for the onset of oscillatory
instability (5.15) becomes

rH = TaH
c

Ta0
= Pr+ 1

Pr

[
1− γa

2
+ γa

2 ln η
Pr+ 1

Pr
(Ta0)

2

]−1/2

(6.6)
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FIGURE 4. (Colour online) Rotating inner cylinder with µ= 0 and η= 0.99. The critical
frequency ωc at the onset of (red) stationary instability and (green) Hopf bifurcation in
units of βΩ (a) versus Pr at γa=0.0004 and (b) versus γa according to (6.7). The limiting
frequency (6.12) at γa= 0.0004 is (ω∞/βΩ)≈ 0.1411. (c) The critical Hopf frequency ωc
as a function of the Brunt–Väisälä frequency N according to (6.11) and (6.13). The critical
frequency vanishes at Nc/Ω ≈ 0.5572 for Pr = 50, at Nc/Ω ≈ 0.28 for Pr = 100, and at
Nc/Ω ≈ 0.0281 for Pr= 1000 calculated by means of (6.14) and (4.16).

and the Hopf frequency of the oscillatory modes (5.17) acquires the form

ωc

Ω
= β

Pr+ 1
1

Ta0

√
−1+ γa

2
− γaPr(Pr+ 1)

2 ln η
(Ta0)

2. (6.7)

Figure 1(a,b) illustrates the variation of the threshold of Hopf bifurcation with
Pr and γa for circular Couette flow with the inner cylinder rotating alone. The
variation of the Hopf frequency with Pr and γa in this rotating case is shown in
figure 4. Similarly to stationary instability, both the threshold (6.6) and the frequency
(6.7) of the oscillatory modes depend explicitly on the Prandtl number Pr and on
the temperature drop parameter Ŝ, in agreement with the numerical calculations of
(Meyer et al. 2015).

We see that at γa > 0 both rH > 1 and rS > 1, i.e. outward heating is stabilizing for
both stationary and oscillatory modes with respect to isothermal flow. The growth rates
shown in figure 1(c) demonstrate that the complex roots do not exist at γa 6 0; they
appear at γa > 0 due to splitting of a double real eigenvalue. When this eigenvalue is
negative the complex roots are stable. They acquire a positive growth rate only after
a double real eigenvalue passes through zero with the change of parameters, which
happens exactly at a codimension-2 point, cf. Tuckerman (2001).

Indeed, since this flow is Rayleigh-unstable in the absence of diffusion, the branches
of the stationary and oscillatory modes have a common codimension-2 point with the
coordinates (5.18) and (5.19) that in the parametric representation, (4.16) and (6.3)
can be written as follows:

Pr∗ =−1
2
+ 1

2

√
1− 4

2− γa

γa

ln η
(Ta0)2

, (6.8)

Ta∗ = Ta0

[
1− γa

2
+ γaPr∗

(Ta0)
2

ln η

]−1/2

. (6.9)
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At the codimension-2 point one of the roots of the dispersion relation is double zero
and the other one is simple real and negative, corresponding to a damped mode, as
the growth rates demonstrate in figure 1(c).

The threshold for the excitation of oscillatory modes and the corresponding critical
frequency of the oscillatory modes for both the Rayleigh-stable and the Rayleigh-
unstable rotation regimes in the Couette–Taylor system are summarized in table 2. For
the Rayleigh-unstable flows with outward heating the oscillatory instability actually
occurs at Pr> Pr∗, where Pr∗ is given by (5.18) or (6.8), see figure 1.

Figures 2 and 3 show the boundaries of stationary instability and Hopf bifurcation
in the (Pr, Ta)-plane for Rayleigh-stable flows such as Keplerian rotation, solid-body
rotation and the case of the outer cylinder rotating. We see also that the frequency of
the oscillatory instability is increasing while approaching the outer cylinder rotating
case, whereas the growth rate of the oscillatory instability at low Pr is decreasing.

All these Rayleigh-stable flows (1+ Ro> 0 or µ> η2) with inward heating (γa <
0) share the same property. Namely, the oscillatory modes are excited when thermal
diffusion dominates over the fluid viscosity

0< Pr< PrH = γaΘ̂Rt

γaΘ̂Rt− 4(1+ Ro)(1− γaΘ̂)
< 1. (6.10)

This result follows from the observation that the Hopf bifurcation from the base flow
can occur if the radicand in (5.15) is positive. In contrast, the stationary modes are
excited in the Rayleigh-stable flow by inward heating when Pr> PrS > 1, where PrS

is given in (6.4) and table 1.
Therefore, for Rayleigh-stable flows an inward radial temperature gradient

destabilizes the flow depending on the value of Pr. The oscillatory instability occurs
at 0<Pr< 1 while the stationary instability takes place at Pr> 1. At Pr= 1 the flows
remain stable, becoming unstable only when Pr 6= 1, which is a characteristic feature
of double-diffusive instabilities (Acheson & Gibbons 1978; Kirillov & Verhulst 2010;
Kirillov 2013).

As figures 2 and 3 demonstrate, when Pr→0, the threshold of the oscillatory modes
(5.15) occurring in the Rayleigh-stable flows becomes infinite (TaH

c →∞) while their

frequency ω̄c→ 2
√
(1+ Ro)(1− γaΘ̂) depends weakly on the heating parameter γa.

The opposite limit, when Pr→∞, is applicable to the threshold of Hopf bifurcation
in Rayleigh-unstable flows with outward heating (γa > 0), yielding TaH

c → [γaΘ̂Rt −
4(1− γaΘ̂)(1+ Ro)]−1/2. The corresponding Hopf frequency becomes independent of

the rotation rate: ω̄∞=
√
−γaΘ̂Rt, as is visible in figure 4(a). Figure 4(b) shows that

the Hopf frequency is bounded (0< ω̄c < ω̄∞) at any fixed Pr∗ < Pr<∞.
The frequency ω̄∞ is fixed by the Brunt–Väisälä frequency N in the case of stable

stratification of the fluid density (γa > 0, Rt< 0), as is evident in figure 4(c). Indeed,
for a fixed value of Pr, the Hopf frequency (5.17) can be expressed via the Brunt–
Väisälä frequency as

ω̄c =
√

N2

2Ω2

Pr
Pr+ 1

+ 4(1+ Ro)(1− γaΘ̂)

(Pr+ 1)2
. (6.11)

Hence, in the limit of Pr→∞ we have

ω̄∞ = 1√
2

N
Ω
=
√
− γa

2 ln η
, (6.12)
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which, in particular, yields another expression for the Brunt–Väisälä frequency in the
case of Rayleigh-unstable flows with outward heating (γa > 0):

N2 =− γa

ln η
Ω2. (6.13)

Figure 4(c) shows that all the critical frequencies tend asymptotically to the line
(6.12) as N/Ω→∞. With a decrease in the ratio N/Ω the critical frequency vanishes
at the characteristic value of the Brunt–Väisälä frequency Nc given by

N2
c

Ω2
=−8(1+ Ro)(1− γaΘ̂)

Pr(Pr+ 1)
. (6.14)

The characteristic Brunt–Väisälä frequency Nc determines the stratification that
is required to excite inertial waves by the rotation. Since Nc decreases with an
increase in Pr (figure 4), we conclude that the inertial waves are easier to excite
in Rayleigh-unstable flow by an outward radial temperature gradient in the case of
highly viscous fluids than in the case of weakly viscous fluids.

7. Discussion
The short-wavelength approximation has been used to investigate the stability of

Taylor–Couette flow with a radial buoyancy force induced by coupling between a
radial temperature gradient and the centrifugal force in the Boussinesq approximation.
A characteristic polynomial equation has been analysed and marginal stability
branches of stationary and oscillatory modes have been found analytically. The
present method allows one to find the explicit dependence of the marginal state with
the main control parameters: Pr, Ro, γa and Rt.

The reader should be aware that for the validity of the Boussinesq approximation,
the thermal expansion parameter must be very small (i.e. |γa| � 1) so that it is
possible to neglect γa before 1 in all expressions containing 1 − γa/2. In fact, in
our computations, the largest value of |γa| was |γa| = 0.01 for fluids with the largest
expansion coefficient found in the literature, to which a maximum of temperature
difference applied should not exceed 1Tmax = 5 ◦C.

From the above results computed at the geometric mean radius, for each value of
rotating case in circular Couette flow (i.e. for a given value of µ), it is possible to
determine the critical modes and their threshold Tac as a function of different flow
parameters η, γa and Pr together with the critical frequency for oscillatory modes.
We have determined the critical parameters for the particular case of specific interest:
sole inner cylinder rotation (µ= 0), sole outer cylinder rotation (µ→∞), solid body
rotation (µ= 1) and Keplerian rotation (µ= η3/2).

For the inner cylinder sole rotation, we have retrieved and extended the results of
linear stability analysis (Meyer et al. 2015). For example, we have proved easily that
the slope of the branch of stationary modes at the origin (γa = 0) is increasing with
both Pr and η. In fact, one gets

dTa
dγa

(γa = 0)= Ta0

4

(
1− 2Pr(Ta0)

2

ln η

)
. (7.1)

To our best knowledge, Rayleigh-stable flows (except solid body rotation) with a
radial temperature gradient have never been treated analytically in such detail so far
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and the results presented in this work offer new predictions of convective instabilities.
In the case of sole outer cylinder rotation, in the case of solid body rotation, and
in the Keplerian regime, inward heating is destabilizing and leads to the oscillatory
instability via Hopf bifurcation at 0 < Pr < PrH < 1 and to stationary instability for
any value Pr>PrS> 1, where the thresholds depend on γa and η (table 1). The values
of Pr for which the oscillatory instability is observed are comparable to those of the
astrophysical flows for which Pr≈ 0.02. At the Rayleigh line the flow is unstable for
inward heating. The present model is based on the short-wavelength approximation in
the axial direction, so, strictly speaking, it cannot be applied as such to the case of
solid body rotation, where it is known (Auer, Busse & Clever 1995) that the critical
modes are columnar vortices (n 6= 0, k= 0).

In appendix A we have compared the present results with those derived by
Economides and Moir (Economides & Moir 1980) for Taylor–Couette flow with
a centripetal acceleration and a radial temperature gradient. Lopez et al. (2013) have
investigated the stability of a rotating cylindrical annulus with a negative radial
temperature gradient and in the presence of gravity g. While these authors suggested
that quasi-Keplerian flows may be stable for weak stratification in the radial direction,
our results show that laminar quasi-Keplerian flows may be destabilized by the
centrifugal buoyancy, leading to oscillatory modes for values of Pr relevant to
accretion-disc problem, although we have considered a model that has solid radial
boundaries.

8. Conclusion
The short-wavelength approximation method has been applied to the linear stability

of circular Couette flow with a centrifugal buoyancy induced by a radial temperature
gradient in the absence of natural gravity. The marginal states (stationary and
oscillatory modes) have been determined analytically and the effects of the different
parameters of the problem on flow stability have been analysed in detail. The
centrifugal buoyancy enhances the instability of Rayleigh-unstable flows in inward
heating, and in outward heating it induces oscillatory modes, the frequency of which
can be compared with the Brunt–Väisäla frequency in the limit of large Pr values.
In inward heating it also induces instability in Rayleigh-stable flows in the form of
stationary modes for large values of Pr or oscillatory modes for small values of Pr.
The present study may serve as a theoretical guideline to linear stability analysis and
to direct numerical simulations (DNS) of the flow.
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Appendix A. Link to Economides & Moir (1980)
In the appendix we would like to compare our short-wavelength equations with

the matrix (4.6) to the results by Economides and Moir (Economides & Moir 1980)
derived in the narrow-gap approximation.
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Let d = R2 − R1� R1 be the size of the gap between the cylinders in the Couette
cell. Then, we can write

x= (r− R1)/d, µ=Ω2/Ω1, Ω(x)= 1− (1−µ)x, x ∈ [0, 1]. (A 1a−d)

Denoting D= d/dx so that d/dr= d−1d/dx we define the operators

L=D2 − (kzd)2 − σ − ik
√

TΩ(x),
M =D2 − (kzd)2 − σPr− ikPr

√
TΩ(x),

}
(A 2)

where Pr= ν/κ is the Prandtl number and

σ = ωd2

ν
, k=m

√
−Ω1

4A
, T =−4AΩ1d4

ν2
, β̄ = T2 − T1

R2 − R1
. (A 3a−d)

The temporal eigenvalue is denoted by ω and the azimuthal wavenumber by m. The
parameter A is a coefficient in the expression for the background circular Couette flow

rΩ(r)= Ar+ B
r

(A 4)

and can be expressed via the Rossby number Ro as Kirillov et al. (2014):

A=Ω(1+ Ro). (A 5)

Then, the system of the narrow-gap equations derived in Economides & Moir (1980)
is

L(D2 − (kzd)2)u′ =−(kzd)2TΩ(x)v′ + (kzd)2Rθ ′,
Lv′ = u′,
Mθ ′ = u′,



 (A 6)

where (with g denoting constant gravitational acceleration and α the coefficient of
thermal expansion)

R= gαβ̄d4

νκ
, u′ = 2Adδ

νΩ1
u, v′ = v

R1Ω1
, θ ′ = 2Aκθ

β̄νΩ1R1
, δ = d

R1
. (A 7a−e)

For any w∼ exp(ikrr), we have

Lw = −d2

ν
[ν(k2

r + k2
z )+ω+ imΩ1Ω(x)]w

= −d2

ν
[ν|k|2 +ω+ imΩ1Ω(x)]w

= −d2

ν
[ων +ω+ imΩ1Ω(x)]w. (A 8)

Hence, if u, v ∼ exp(ikrr) the first of (A 6) becomes

−d2

ν
[ων +ω+ imΩ1Ω(x)] (−d2|k|2)2Adδ

νΩ1
u

=−(kzd)2(−4AΩ1d4)
Ω(x)
ν2R1Ω1

v + (kzd)2
2Agαd4

ν2Ω1R1
θ. (A 9)
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Simplifying the above expression, we find

[ων +ω+ imΩ1Ω(x)] u= k2
z

|k|2 2Ω1Ω(x)
d
δR1

v + k2
z

|k|2
d
δR1

gαθ (A 10)

and finally

[ων +ω+ imΩ1Ω(x)] u= k2
z

|k|2 2Ω1Ω(x)v + k2
z

|k|2 gαθ, (A 11)

where ων = ν|k|2.
Analogously, the second of (A 6) becomes

− d2

νR1Ω1
[ων +ω+ imΩ1Ω(x)] v = 2Adδ

νΩ1
u. (A 12)

Simplifying it, we get

[ων +ω+ imΩ1Ω(x)] v =−2Au (A 13)

and, finally
[ων +ω+ imΩ1Ω(x)] v =−2Ω(1+ Ro)u. (A 14)

Now, for the third of (A 6) we find

[
−k2

r d2 − (kzd)2 − σPr− ikPr
√

TΩ(x)
] 2Aκ
β̄νΩ1R1

θ = 2Adδ
νΩ1

u, (A 15)

and equivalently,

[−κk2
r − κk2

z −ω− imΩ1Ω(x)
] d
β̄νR1

θ = δ
ν

u, (A 16)

so that finally
[ωκ +ω+ imΩ1Ω(x)] θ =−β̄u, (A 17)

where ωκ = κ|k|2.
We can denote Ω =Ω1Ω(x) and write the three equations in the matrix form



ων +ω+ imΩ − k2

z

|k|2 2Ω − k2
z

|k|2 gα

2Ω(1+ Ro) ων +ω+ imΩ 0
β̄ 0 ωκ +ω+ imΩ







u
v

θ


= 0. (A 18)

In fact, β̄ = (T2 − T1)/(R2 − R1) is a ‘derivative’ of the temperature with respect to
radius and in the local approximation we can replace it with Θ ′ = dθ0/dr. Then, we
can denote β = (kz/|k|) and write



ων +ω+ imΩ −2Ωβ2 −αgβ2

2Ω(1+ Ro) ων +ω+ imΩ 0
Θ ′ 0 ωκ +ω+ imΩ






u
v

θ


= 0. (A 19)
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For the stationary axisymmetric instability the Bilharz criterion (Bilharz 1944) applied
to the characteristic polynomial of the matrix on the left-hand side of (A 19) yields:

4(Ro+ 1)+ Pr
g
Ω2

2RtΘα
r
+ 1

Ta2 > 0 (A 20)

With g = Ω2r, and taking into account that the sign of α in Economides & Moir
(1980) is opposite to the sign of α in (2.1), we reduce the above equation to the
form

4(Ro+ 1)− 2PrRtΘ̂γa + 1
Ta2 > 0, (A 21)

which differs from the condition (5.11) only by the factor 1− γaΘ̂ at the first term.
The reason for this discrepancy is that in Economides & Moir (1980) g is assumed
to be a constant radial gravitational acceleration whereas in Meyer et al. (2015) it is
the centrifugal acceleration that depends on radius. Hence, substitution of g = Ω2r
into (A 20) is not justified. On the other hand, the factor 1 − γaΘ̂ is small in the
Boussinesq approximation, and consequently (5.11) and (A 21) can be considered as
equivalent.

Taking into account that in the Boussinesq approximation the squared Brunt–Väisälä
frequency is N2 =−2γaΘ̂RtΩ2, we transform (A 21) as

4(Ro+ 1)+ Pr
N2

Ω2
+ 1

Ta2 > 0. (A 22)

With the opposite sign the inequality (A 22) is the onset of the double-diffusive
Goldreich–Schubert–Fricke instability in the form derived in Acheson & Gibbons
(1978).
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