
Chapter 2

WKB Solutions Near an Unstable
Equilibrium and Applications

In this chapter, we present some precise results concerning spectral and scattering
problems for the Schrödinger equation in the semi-classical regime, which we have
obtained in a series of papers [ALE 08, BON 07, BON 11, BON]. As we can expect,
properties of the underlying classical system play a crucial role in this regime, and we
have studied the case where there exists one hyperbolic fixed point for the associated
Hamiltonian flow. This occurs, for example, when the potential has a local maximum.
Much is encoded in what we call a microlocal Cauchy problem at the fixed point,
which we describe here in detail. In a physicist’s language, the study of this microlocal
Cauchy problem is that of the n-dimensional tunneling effect at the hyperbolic fixed
point.

2.1. Introduction

In this chapter, we sum up different results obtained in a series of paper [BON 07,
BON 11, BON, ALE 08] concerning spectral or scattering quantities attached to the
semi-classical Schrödinger operator on L2(Rn)

P =−h2Δ+V (x), [2.1]
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and the corresponding classical Hamiltonian

p(x,ξ ) =
n

∑
j=1

ξ 2
j +V (x). [2.2]

Here, h is a small positive parameter, x = (x1,x2, . . . ,xn), ξ = (ξ1,ξ2, . . . ,ξn) and
V (x) is a real-valued smooth potential.

We suppose that V (x) has a local non-degenerate maximum E0 at a point, say at
the origin x = 0. We investigate the asymptotic behavior as h → 0 of solutions to the
equation

Pu = Eu, [2.3]

when the spectral parameter E is in a vicinity of size O(h) of E0. Of course, we are in
a setting where the tunnel effect occurs at the barrier top. We will see quantitatively
that, for such energies, tunneling governs the behavior of the physical quantities we
are interested in.

Here, we have chosen to concentrate on a scattering situation, namely we assume
that E0 > 0 and V (x)→ 0 as |x| → +∞. In this setting, we will describe some results
concerning resonances for the Schrödinger operator P.

In physics, the notion of quantum resonance appeared at the beginning of
quantum mechanics. Its introduction was motivated by the behavior of various
quantities related to scattering experiments, such as the scattering amplitude, the
scattering cross-section or the time-delay (the derivative of the spectral shift
function). At certain energies, these quantities present peaks (now called
Breit–Wigner peaks), which were modelized by a Lorentzian-shaped function

wa,b : λ -−→ 1
π

b
(λ −a)2 +b2 ·

The real numbers a and (πb)−1 > 0 are the location of the maximum of the peak
and its height. The number 2b is the width of the peak (more precisely its width at half
its height). Of course, for ρ = a− ib ∈ C, we have

wa,b(λ ) =− 1
π

Imρ
|λ −ρ|2 ,
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where the complex number ρ is a resonance. Such complex values for energies had
also appeared, for example, in the work of Gamow [GAM 28], to explain
α-radioactivity. In that context, the inverse of the imaginary part of the resonance
appears to be the half-life time of the corresponding pseudo-particle.

On the mathematical side, the study of resonances for Schrödinger operators is
more recent. It has permitted us to give a rigorous framework and obtain very precise
results, in particular, on the location of resonances in relation to the geometry of the
underlying classical flow. One of the most efficient mathematical definitions of
resonances is based on the notion of complex scaling (see, e.g., [AGU 71, BAL 71,
SIM 79, HUN 86, SIG 84, CYC 85, NAK 90, NAK 89, HEL 86, SJÖ 91]). As a
matter of fact, resonances, both in the physical sense and in the mathematical sense,
are poles in the lower half plane, say, of a suitable meromorphic extension of the
resolvent (P−E)−1 from the upper half plane through the essential spectrum of P
(the positive real axis).

In a semi-classical regime, one expects, according to Bohr’s correspondence
principle, that the underlying classical system appears in the discussion. As a matter
of fact, in our settings, classical quantities play the main role. Since works by
Hörmander and others, the usual way to make the link between the quantum
quantities and the classical quantities has been to use the language of microlocal
analysis, here in the semi-classical setting. In particular, we will say that a function
u ∈ L2(Rn) is microlocally zero at a point (x0,ξ0) of the phase space, which means
that there exists a smooth cut-off function χ , with χ(x0,ξ0) = 1, such that

χw(x,hD)u(x) = O(h∞).

Here, χw(x,hD) is the semi-classical Weyl quantization of the cut-off function χ
(see definition 2.1).

Of course, the key to the study of resonances is to have a good knowledge of
the solutions u to the Schrödinger equation [2.3] for energies E close to the barrier
top energy E0, and more precisely their asymptotic Wentzel Kramers Brillouin (or
WKB) behavior as h → 0. In fact, the behavior of u outside of a compact set is rather
clear since V is close to 0 there, and the main difficulty is to obtain a sharp enough
description of u in a vicinity of the maximum point. More precisely, it appears that
the microlocal behavior of u in a neighborhood of the hyperbolic fixed point in the
phase space is the only thing that matters. The function v = χwu, that is the function u
truncated microlocally near the hyperbolic fixed point, satisfies the microlocal Cauchy
problem

�
Pv = Ev microlocally near the fixed point,

v has a prescribed behavior in some incoming region.
[2.4]
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This kind of microlocal Cauchy formulation is analogous to some normal form
reduction, but can be used in more general geometric settings. Moreover, this
approach avoids the use of an abstract reduction operator, and the solution of the
problem [2.4] can be written explicitly. In the present case, the study of the
microlocal Cauchy problem is given in section 2.2. The knowledge of the solution v
of [2.4] allows us to obtain the asymptotic behavior of the solution u to [2.3], and,
eventually, to compute the physical quantities we study.

Among the applications of this microlocal study, we focus here on the following
two:

– Describe the behavior of the Schrödinger group, in the case where the potential
V has the form of a single barrier of height E0, for energies close to E0. It turns
out that the semi-classical expansion of this evolution operator involves resonances
created by the barrier top. The results in section 2.2 are used to compute the non-
orthogonal projection operator corresponding to each resonance, which appears in the
representation formula of the evolution operator.

– Prove the existence of a resonance-free zone, i.e. give an estimate from below of
the imaginary part of resonances, when the classical system possesses a homoclinic
orbit. The results in section 2.2 along with the standard Maslov theory enable us to
compute the decay of microlocal solution after a continuation along the homoclinic
trajectories. This leads us to a contradiction if a resonance is assumed to be close
enough to the real axis.

2.2. Connection of microlocal solutions near a hyperbolic fixed point

In this section, we have the following assumption:

(A1) V (x) is a real-valued smooth function near the origin and the origin is a non-
degenerate maximal point.

In suitable coordinates, the Taylor expansion at the origin can be written in the
form

V (x) = E0 −
n

∑
j=1

λ 2
j

4
x2

j +O(x3) as x → 0, [2.5]

with maximal value E0 and positive constants

0 < λ1 ≤ λ2 ≤ ·· · ≤ λn.
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2.2.1. A model in one dimension

In the remainder of this chapter, we will study the general n-dimensional case, but
to start with, we recall here some well-known results concerning the simplest one-
dimensional operator with such a hyperbolic fixed point. We study the asymptotic
expansion of the solutions to the one-dimensional Schrödinger equation

Pu :=
&
−h2 d2

dx2 − λ 2

4
x2
-

u = hzu, [2.6]

with respect to the semi-classical parameter h → 0. Here, λ is a positive constant and
z is a spectral parameter bounded with respect to h. The potential −λ 2x2/4 presents a
non-degenerate barrier at x = 0 and the energy E = hz is close to the maximum value
E0 = 0. In this one-dimensional simple case, we describe here the solutions in terms
of Weber functions.

If z =−iλ
%
k+ 1

2

,
, k ∈ N := {0,1,2, . . .}, there exists a solution

uk(x,h) = Hk

&
e−πi/4

5
λ
h

x
-

eiλx2/(4h),

where Hk is the Hermite polynomial of degree k. The function uk is an outgoing wave
for x → ±∞ (in the sense that its microsupport is included in the outgoing stable
manifold of the corresponding classical Hamiltonian vector field, see sections 2.2.2
and 2.2.3).

If z ∈ C\−iλ
%
N+ 1

2

,
, i.e. if ν := iz/λ −1/2 /∈ N, then

uν(x,h) := Dν

&
e−πi/4

5
λ
h

x
-

[2.7]

is a solution to [2.6]. Here

Dν(y) =
1

Γ(−ν)

! ∞

0
exp

&
−
&

y2

4
+ yη +

η2

2

--
η−ν−1dη ,

is the Weber function. For any cut-off function χ that is identically equal to 1 on an
interval [0,R], we define

Iν(x,h) =
! ∞

0
exp

&
iλ
h

&
x2

4
+ xξ +

ξ 2

2

--
ξ−ν−1χ(ξ )dξ . [2.8]
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Then, we see the following.

PROPOSITION 2.1.–

1) Iν(x,h) is a quasi-mode, i.e. for |x|< R, we have

(P−hz)Iν(x,h) = O(h∞).

2) Solution [2.7] satisfies uν(x,h) = const · Iν(x,h)+O(h∞) on L2([−R,R]).

3) Suppose ν stays in a compact subset of C\N for any h small enough. Then, Iν
has an asymptotic expansion in powers of h uniformly for x in any compact subset of
R\{0}: for x > 0, there exists a symbol a(x,h)∼ ∑∞

k=0 ak(x)hk with a0 = 1 such that

Iν(x,h) = e−πiν/2Γ(−ν)
&

λx
h

-ν
eiλx2/(4h)a(x,h),

and, for x < 0, there exist symbols b(x,h) ∼ ∑∞
k=0 bk(x)hk with b0 = 1 and c(x,h) ∼

∑∞
k=0 ck(x)hk with c0 = 1 such that

Iν(x,h) = eπiν/2Γ(−ν)
&

λ |x|
h

-ν
eiλx2/(4h)b(x,h)

+eπi/4

5
2πh
λ

|x|−ν−1e−iλx2/(4h)c(x,h).

Here, a(x,h) ∼ ∑∞
k=0 ak(x)hk means that for any N ∈ N, a(x,h)−∑N

k=0 ak(x)hk =
O(hN+1).

The function uν(x,h) describes a wave coming from x < 0 to the origin and
scattered in the positive and negative directions. In the case of z = 0, in particular,
this proposition states that when the amplitude of the incoming wave is normalized to
|x|−1/2 then that of the transmitted wave in the region x > 0 is x−1/2/

√
2 and that of

the reflected wave in the region x < 0 is |x|−1/2/
√

2 (see [2.33]).

However, in the case of z =−iλ
%
k+ 1

2

,
, the wave is purely outgoing. This means

that for these energies, the incoming wave does not determine the outgoing wave.

In the following, we generalize this fact to the multidimensional case with
potential having a non-degenerate local maximum. Theorem 2.2 guarantees that the
incoming wave determines the outgoing wave except for a discrete set of energies,
and theorem 2.3 provides the asymptotic behavior of the outgoing wave in terms of
that of the incoming wave.
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2.2.2. Classical mechanics

Recall that p(x,ξ ) is the classical Hamiltonian [2.2] with V (x) satisfying (A1).
Consider the canonical system of p

d
dt

$
x

ξ

+
=

$
∇ξ p

−∇x p

+
. [2.9]

The origin (x,ξ ) = (0,0) is a fixed point of the Hamilton vector field Hp. The
linearization of Hp at the origin is

d
dt

$
x

ξ

+
= Fp

$
x

ξ

+
, [2.10]

where Fp is the fundamental matrix

Fp :=

⎛⎝ ∂ 2 p
∂x∂ξ

∂ 2 p
∂ξ 2

− ∂ 2 p
∂x2 − ∂ 2 p

∂ ξ∂x

⎞⎠<<<(x,ξ )=(0,0)

=

$
0 2Id

1
2 diag(λ 2

j ) 0

+
.

This matrix has n positive eigenvalues {λ j}n
j=1 and n negative eigenvalues

{−λ j}n
j=1. The eigenspaces Λ0± corresponding to these positive and negative

eigenvalues are, respectively, outgoing and incoming stable manifolds for the
quadratic part p0 of p:

Λ0± =
�
(x,ξ ) ∈ R2n; exp(tHp0)(x,ξ )→ (0,0) as t →∓∞



=

�
(x,ξ ) ∈ R2n; ξ j =±λ j

2 x j, j = 1, . . . ,n


.

By the stable manifold theorem, we also have outgoing and incoming stable
manifolds for p:

Λ± =
�
(x,ξ ) ∈ R2n; exp(tHp)(x,ξ )→ (0,0) as t →∓∞



.

The tangent space of Λ± at (0,0) is Λ0±. The manifolds Λ± are Lagrangian
manifolds and can be written near (0,0)

Λ± =
�
(x,ξ ) ∈ R2n; ξ =

∂φ±
∂x

(x)
	
,
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where the generating functions φ± behave like

φ±(x) =±
n

∑
j=1

λ j

4
x2

j +O
%|x|3, as x → 0. [2.11]

ξ

Λ−

Λ0
+

Λ+

Λ0−

x

Figure 2.1. The Lagrangian manifolds Λ± and Λ0±

Now suppose ρ± = (x±,ξ±) ∈ Λ± \{(0,0)}. Then by definition exp(tHp)(ρ±)→
(0,0) as t →∓∞. More precisely, we have the following.

PROPOSITION 2.2.–

exp(tHp)(ρ±)∼
∞

∑
k=1

γ±k (t)e±μkt as t →∓∞,

where

0 < μ1 < μ2 < · · ·

are the linear combinations over N of {λ j}n
j=1, and, in particular, μ1 = λ1. The γ±k (t)

are vector-valued polynomials in t. Moreover, γ1 is independent of t and is an
eigenvector of Fp corresponding to ±λ1. Note that γ1e−λ1t is a solution to [2.10].

In what follows, we will denote the x-space projection of the vector γ±1 (ρ±) by
g±(ρ±).

REMARK 2.1.– By the symmetry with respect to ξ of p(x,ξ ), we have

φ−(x) =−φ+(x) and Λ− =
�
(x,−ξ ) ∈ R2n; (x,ξ ) ∈ Λ+



.

If ρ± = (x,±ξ ) ∈ Λ±, then

g+(ρ+) = g−(ρ−) =: g(x).
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2.2.3. Review of semi-classical microlocal analysis

In this section, we recall some basic properties of the h-pseudo-differential
calculus. For more details, we refer the reader to [DIM 99, MAR 02, ZWO 12]. We
begin with the definition of the semi-classical pseudo-differential operators in Weyl
quantization.

DEFINITION 2.1.– Let χ(x,ξ ) be a function in C∞
b (Rn

x ×Rn
ξ ) (the space of functions

bounded with all their derivatives). The pseudo-differential operator χw(x,hD) with
symbol χ is defined by

(χw(x,hD)u)(x) =
1

(2πh)n

!!
ei(x−y)·ξ/hχ

#x+ y
2

,ξ
*

u(y)dydξ ,

for all u in the Schwartz space S(Rn).

In particular, if χ(x,ξ ) = χ(x) (respectively χ(x,ξ ) = χ(ξ )), then χw(x,hD) is
simply the multiplication operator by χ(x) (respectively the semi-classical Fourier
multiplier by χ(ξ )). We now define the notion of microsupport. Let u(x;h) be in
L2(Rn) depending on h with �u� ≤ 1 and (x0,ξ0) a point in the phase space R2n.

DEFINITION 2.2.– We say that u = 0 microlocally at (x0,ξ0) if there exists a function
χ ∈C∞

0 (R2n) with χ(x0,ξ0) = 1 such that

;;χw(x,hD)u
;;

L2(Rn)
= O(h∞) as h → 0. [2.12]

The complement of the set of such points is called the microsupport (or frequency set).

In other words, u = 0 microlocally near (x0,ξ0) iff the function u does not oscillate
near x0 with semi-classical frequencies closed to ξ0. If it is the case, then [2.12] holds
true for all χ ∈C∞

0 (R2n) supported in a neighborhood of (x0,ξ0). For Ω ⊂R2n, we say
that u = 0 microlocally in Ω (respectively outside Ω) iff u = 0 microlocally near each
point in Ω (respectively not in Ω). We recall now some fundamental properties of the
microsupport.

PROPOSITION 2.3.– The microsupport of a function u is a closed set.

PROPOSITION 2.4.– Let u(x;h) = a(x;h)eiφ(x)/h, where φ(x) is a real-valued C∞

function in a domain Ω ⊂ Rn and a(x;h) is a C∞ symbol on Ω, i.e. a(x;h) is bounded
in Ω uniformly with respect to h with all its derivatives. Then

u = 0 microlocally outside
�
(x,ξ ) ∈ R2n; ξ =

∂φ
∂x

(x)
	
.



24 Nonlinear Physical Systems

Eventually, we state the theorem of propagation of singularities that was first
proved by Hörmander [HÖR 71] in the classical setting.

THEOREM 2.1.– PROPAGATION OF SINGULARITIES – Let u be a solution to [2.3]
such that �u� ≤ 1. The microsupport of u is included in the characteristic set. This
means

u = 0 microlocally outside Char(p−E0) :=
�
(x,ξ ) ∈ R2n; p(x,ξ ) = E0



.

Moreover, for all (x0,ξ0) ∈ Char(p− E0), u = 0 microlocally near (x0,ξ0) ⇐⇒
∀t ∈ I,u = 0 microlocally near exp(tHp)(x0,ξ0), where 0 ∈ I is the maximal interval
of existence of exp(tHp)(x0,ξ0).

2.2.4. The microlocal Cauchy problem – uniqueness

In this section, we consider the microlocal Cauchy problem at a hyperbolic fixed
point of the classical flow. As explained in section 2.1, this approach allows us to focus
on the most important region of the phase space and, eventually, to obtain information
on the global problem.

For a small neighborhood Ω of (0,0) and ε > 0 small, we consider the microlocal
Cauchy problem:

�
Pu = Eu microlocally in Ω,

u = u0(x) microlocally in C := Λ−∩{|x|= ε},
[2.13]

with E = E0+hz. Note that the initial surface C is transversal to the Hamilton flow for
sufficiently small ε . Since we want to study quantities associated with the resonances
that are non-real in general, the spectral parameter z may be complex but in a disc of
center 0 and radius bounded with respect to h.

We start with a unique result for this problem. For the proof, we refer the reader
to [BON 07, section 4]. Let r be any positive number and z be the complex number,
which may depend on h, in a disc D(r) := {z ∈ C; |z|< r}.

THEOREM 2.2.– [BON 07, theorem 2.1]– There exists an h-independent positive
number δ and an h-dependent finite set Γ(h) ⊂ D(r)∩{z ∈ C; Imz < −δ}, whose
cardinal number is bounded with respect to h, such that if dist(z,Γ(h))> hC for some
C > 0, and if u0 = 0, then any solution u ∈ L2(Rn) of [2.13], satisfying �u� ≤ 1, is 0
microlocally in a neighborhood Ω7 of the origin.
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REMARK 2.2.– In the analytic category (i.e. p is analytic near the origin and the notion
of C∞-microsupport (see definition 2.2) is replaced by the analytic microsupport (see
[SJÖ 82])), we have the same theorem with more precision on the set Γ(h). In fact,
Γ(h) is −iE0 modulo O(h), where

E0 =

� n

∑
j=1

λ j

#
α j +

1
2

*
; (α1, . . . ,αn) ∈ Nn

�

is the set of eigenvalues of the harmonic oscillator

−Δ+
n

∑
j=1

λ 2
j

4
x2

j , [2.14]

see [BON 07, theorem 2.2]. Note also that, modulo o(h), E0 − ihE0 is the set of the
resonances generated by the barrier top (see theorem 2.5).

In the C∞ case, Helffer and Sjöstrand [HEL 84] have constructed the asymptotic
expansion (in powers of h1/2) of the eigenvalues at the bottom of a potential well.
The set of the first terms of the expansion is E0. This means that −iE0 is necessarily
included in Γ(h) modulo O(h). We expect that, modulo O(h∞), Γ(h) is the set of −i
times the eigenvalues obtained in [HEL 84].

ρI Λ−

Λ+

ρF

Ω

(0,0)

Ω7
C

Figure 2.2. The geometrical setting of theorems 2.2 and 2.3

If u = 0 microlocally in Ω7, it also vanishes microlocally in Λ+ by theorem 2.1.
Hence, this result can be expressed as follows: the microsupport propagates from the
incoming stable manifold Λ− to the outgoing stable manifold Λ+ under a generic
assumption on the energy z.



26 Nonlinear Physical Systems

2.2.5. The microlocal Cauchy problem – transition operator

Theorem 2.2 states that the data u0 given on Λ− ∩{|x| = ε} uniquely determines
the solution u at any point ρF = (xF ,ξF) on Λ+ (if it exists). Our problem now is to
construct u microlocally near ρF in terms of u0 that, restricted to the initial surface C ,
has its support in a small neighborhood of a point ρI = (xI ,ξI) ∈ C .

We make two generic assumptions: one is on the spectral parameter z and the other
is on the initial point ρI = (xI ,ξI) ∈ C and the final point ρF = (xF ,ξF) ∈ Λ+:

(A2) There exists ν > 0 such that dist(z,Γ(h))> ν ;

(A3) g(xI) ·g(xF) 2= 0.

In particular, g(xI) 2= 0. This means that, in case λ1 < λ2, the Hamilton flow
starting from ρI converges to the origin tangentially to the x1-axis. In case λ1 = λ2,
also, we can assume, without loss of generality, that the x1-axis is parallel to g(xI).
Since p is of real principal type near ρI , we can modify the initial surface C so that it
is given by {x1 = ε}∩Λ− near ρI . Hence, denoting xI = (ε,x7I), the initial data u0 on
C is a function of x7 in a small neighborhood of x7I and 0 elsewhere.

THEOREM 2.3.– [BON 07, theorem 2.6]– Assume (A1), (A2) and (A3). The
microlocal Cauchy problem [2.13] has a solution u (unique thanks to theorem 2.2).
Microlocally near ρF = (xF ,ξF), it has the following representation formula

u(x,h) =
hS(z)/λ1

(2πh)n/2

!
Rn−1

ei(φ+(x)−φ−(ε ,y7))/hd(x,y7;h)u0(y7)dy7. [2.15]

Here

S(z) =
1
2

n

∑
j=1

λ j − iz, [2.16]

and the symbol d ∈ S0
h(1) has the following asymptotic expansion

d(x,y7;h)∼
∞

∑
k=0

dk(x,y7, lnh)h�μk/λ1 , [2.17]

where 0 = �μ0 < �μ1(= μ2 −μ1)< �μ2 < · · · is a numbering of the linear combinations
of {μk − μ1}∞

k=0 over N, and dk(x,y7, lnh) are polynomials in lnh. In particular, the
symbol d0 is independent of lnh.



WKB Solutions Near an Unstable Equilibrium and Applications 27

We will need an explicit expression of the principal term d0 of the symbol d for
theorem 2.10, especially for the definition of J0(α) in [2.31]. It is given by

d0(x,y7) = e−iπn/4λ 1/2−S(z)/λ1
1 exp

&
−S(z)

2λ1
πiσ

-
Γ
&

S(z)
λ1

-

×eI∞(x)

3
|det∇2

y7y7φ−(ε,y7)|
J∞(y7)

|g(ε ,y7)|
|g(ε,y7) ·g(x)|

S(z)
λ1

· [2.18]

Here, σ = sgn(g(xI) ·g(xF)),

I∞(x) :=
! −∞

0

&
Δφ+(x(τ))− 1

2

n

∑
j=1

λ j

-
dτ,

where x(t) is the x-space projection of the flow exp(tHp)(ρF), and

J(t,y7,η 7) := det
∂x(t,y7,η 7)

∂ (t,y7)
,

J∞(y7) := lim
t→+∞

J(t,y7,η 7)
J(0,y7,η 7)

<<η 7= ∂φ−
∂y7 (ε,y

7)
e(−∑n

j=1 λ j+2λ1)t ,

where x(t,y7,η 7) is the x-space projection of the flow exp(tHp)ρ(y7,η 7) for y7 near x7I
and η 7 near ξ 7

I , and ρ(y7,η 7) :=
%
ε,y7;−

4
−|η 7|2 −V (ε,y7),η 7, ∈ {x1 = ε}

∩p−1(E0).

The main idea of the proof for theorem 2.3 is to express the solution u microlocally
near the fixed point (0,0) as a superposition of WKB solutions to the time-dependent
Schrödinger equation

u(x,h) =
1√
2πh

! ∞

0
eiϕ(t,x)/ha(t,x;h)dt.

Then, the phase ϕ(t,x) has an asymptotic expansion as t →+∞

ϕ(t,x)∼ φ+(x)+
∞

∑
k=1

φμk(t,x)e
−μkt ,
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and the symbol a(t,x;h) has classical expansion in h

a(t,x;h)∼
∞

∑
4=0

a4(t,x)h4,

whose coefficients have expansion as t →+∞

a4(t,x)∼
∞

∑
k=0

a4,k(t,x)e−(S+μk)t ,

where a4,k(t,x) is polynomial in t and S = S(z) is defined by [2.16]. In particular, a0,0
can be explicitly calculated from the initial condition on Λ− and gives the value of the
symbol d0 on Λ+.

2.3. Applications to semi-classical resonances

We first recall the definition of the resonances by the complex scaling method
(see [AGU 71, HUN 86, SJÖ 91] and the other references given in section 2.1). This
technique is very efficient in the semi-classical setting since it is well adapted to the
microlocal calculus and since the resonances are seen as the (usual) eigenvalues of a
non-self-adjoint operator. There exist other approaches to define the resonances (poles
of different scattering quantities (see [LAX 89]), poles of the extension of the cut-
off resolvent (see [2.20]), etc.). In fact, all these definitions coincide as proved in
[HEL 87].

To define resonances, we assume

(B1) V (x) ∈C∞(Rn;R) and extends holomorphically in a sector

S =
�

x ∈ Cn; | Imx| ≤ (tanθ0)|Rex| and |Rex|>C


,

for some positive constants θ0 and C. Moreover

V (x)−→ 0 as |x| → ∞ in S .

Then, P is a self-adjoint operator on L2(Rn) with σess(P) = R+. To this operator,
we associate a distorted operator

8Pμ =Uμ PU−μ , (Uμ f )(x) := |det(Id+μdF)|1/2 f (x+μF(x)),
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for small real μ and F ∈C∞(Rn;Rn) with

F(x) = 0 on |x|< R and F(x) = x on |x|> R+1,

for large R. This operator 8Pμ is analytic of type-A with respect to μ , and, taking R
large enough, Pθ := 8Piθ is well defined for θ small enough. Then, σess(Pθ ) = e−2iθR+

and the spectrum of Pθ in Cθ := {E ∈ C\{0}; −2θ < argE < 0} is discrete.

DEFINITION 2.3.– Resonances are the eigenvalues of Pθ in Cθ . The multiplicity of a
resonance E∗ is the rank of the spectral projection

ΠE∗ =
1

2πi

!
γ
(E −Pθ )

−1dE, [2.19]

where γ is a small circle centered at E∗ and we choose θ with E∗ ∈ Cθ . Resonances
are independent of θ in the sense that σ(Pθ 7)∩Cθ = σ(Pθ )∩Cθ for θ < θ 7 by taking
into account the multiplicity. Moreover, the resonances are also independent of F.
Hence, we will denote the set of resonances by Res(h) without indicating θ and F.

Equivalently, we can define the resonances of P by showing that the resolvent
(E −P)−1 : L2

comp(Rn) −→ L2
loc(Rn) has a meromorphic extension R+(E) from the

upper half plane to Cθ across (0,∞). We have

χR+(E)χ = χ(E −Pθ )
−1χ. [2.20]

for any cut-off function χ whose support is in |x| < R. The poles are the resonances
and the multiplicity of a resonance is also given by rank 1

2πi
"

γ R+(E)dE.

Let K(E) be the set of trapped trajectories on the energy surface p−1(E):

K(E) =
�
(x,ξ ) ∈ p−1(E); t -→ exp(tHp)(x,ξ ) is bounded



.

The following result suggests a close relationship between the semi-classical
distribution of resonances near a real energy E and the geometry of K(E) of the
corresponding classical dynamics.

THEOREM 2.4.– [MAR 02a] Let E0 > 0 be such that K(E0) = /0. Then, there exists
ε > 0 such that, for any C > 0, there is no resonance in the box

[E0 − ε,E0 + ε]+ i
�−Ch| lnh|,0�,

for sufficiently small h.
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In the case where V (x) is globally analytic near Rn, it was earlier proved by
Helffer and Sjöstrand [HEL 85] and also by Briet et al. [BRI 87a] under a stronger
hypothesis called the virial assumption that there is no resonance in an h-independent
neighborhood of E0 such that K(E0) = /0.

In sections 2.3.1 and 2.3.2, we assume (A1) and (B1). The maximal value E0 at the
origin should then be positive. K(E0) contains at least the point (0,0) and we consider
resonances close to E0.

2.3.1. Spectral projection and Schrödinger group

Under (A1), the origin (0,0) is a hyperbolic fixed point and is itself a trapped point
in p−1(E0). Here, we study the case where it is the only trapped point, i.e.

(B2) K(E0) = {(0,0)}.

This assumption implies that E0 is the global maximum of V and it is attained only
at x = 0.

When V (x) is assumed to be analytic globally near Rn, the semi-classical
distribution of resonances is known near the barrier top energy E0 (in [BRI 87b], a
virial condition is assumed).

THEOREM 2.5.– [BRI 87b, SJÖ 87]– Let Res0(h) be the discrete set

Res0(h) := E0 − ihE0 =

�
E0

α := E0 − ih
n

∑
j=1

λ j

#
α j +

1
2

*
; α = (α1, . . . ,αn) ∈ Nn

�
,

and let C be an h-independent positive constant such that C 2= ∑n
j=1 λ j (α j +

1
2 ) for

any α ∈ Nn. Then, in D(E0,Ch), there exists a bijection

bh : Res0(h)∩D(E0,Ch)−→ Res(h)∩D(E0,Ch),

such that bh(E) = E +o(h).

Let us denote Eα = bh(E0
α). We call E0

α pseudo-resonance (see [SJÖ 01]). We
say that a pseudo-resonance E0

α is simple if E0
α = E0

α 7 implies α = α 7. If a pseudo-
resonance E0

α is simple, then the corresponding resonance Eα is simple for h small
enough (i.e. its multiplicity is one), and has an asymptotic expansion in powers of h
whose leading term is E0

α .
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THEOREM 2.6.– [BON 11, theorem 4.1]– Assume (A1), (B1), (B2) and suppose E0
α ∈

Res0(h) is simple. Then, as operator from L2
comp(Rn) to L2

loc(Rn), we have

ΠEα = c(h)(·, fα) fα , [2.21]

with

c(h) = h−|α|− n
2

e−i π
2 (|α |+ n

2 )

(2π) n
2 α!

n

∏
j=1

λ α j+
1
2

j , [2.22]

where fα = fα(x,h) is a solution to P fα = Eα fα , locally L2 uniformly in h, vanishes
in the incoming region (in the microlocal sense) and has an asymptotic expansion as
h → 0 for x near the origin

fα = dα(x,h)eiφ+(x)/h, [2.23]

with

dα(x,h)∼ ∑dα, j(x)h j as h → 0, [2.24]

dα ,0(x) = xα +O(|x||α|+1) as x → 0. [2.25]

The proof of theorem 2.6 is as follows. First, we choose a suitable u0
(a Lagrangian distribution which associated Lagrangian manifold that is transverse to
Λ−). Then, we compute the solution of the Cauchy problem [2.13] for E close to Eα
using theorem 2.3. Performing the integration in E around Eα as in [2.19], we
compute the asymptotic of ΠEα u0. The leading term with respect to h comes from the
singularity of the function Γ in [2.18]. In particular, this gives all the stated properties
for fα . Finally, the coefficient c(h) follows from the computation of (u0, fα).

Let us consider the Cauchy problem for the time-dependent Schrödinger equation

⎧⎨⎩ ih
∂ψ
∂ t

(t,x) = Pψ(t,x),

ψ(0,x) = ψ0(x).

We denote the solution ψ(t,x) by e−itP/hψ0. The operator e−itP/h is unitary on
L2(Rn).
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Recall that if E∗ is an isolated eigenvalue of P, then for any ψ(E) ∈ C∞
0 (R)

supported near E∗, we have

e−itP/hψ(P) = e−itE∗/hΠE∗ψ(E∗),

where ΠE∗ is the orthogonal projection to the eigenspace of E∗ generated by
orthonormal eigenfunctions { f j},

ΠE∗ = ∑
j
(·, f j) f j.

In the case of resonances associated with a single barrier top, we have, using the
projection operator of the previous theorem, the following theorem.

THEOREM 2.7.– [BON 11, theorem 6.1]– Assume (A1), (B1), (B2). Let C be any
positive constant such that C 2= ∑n

j=1(β j +
1
2 )λ j for all β ∈ Nn. Then, for any χ ∈

C∞
0 (Rn) and any ψ ∈ C∞

0 (R) supported in a sufficiently small neighborhood of E0,
there exists K > 0 such that for any t, we have as h → 0,

χe−itP/hχψ(P) = ∑
Eα∈Res(h)∩D(E0,Ch)

χ ResidueEα

#
e−itE/hR+(z)

*
χ ψ(P)

+O(h∞)+O(e−Cth−K).

[2.26]

If, in particular, all the pseudo-resonances in D(E0,Ch) are simple, we have, for
any t, and as h → 0,

χe−itP/hχψ(P) = ∑
Eα∈Res(h)∩D(E0,Ch)

e−itEα/h χΠEα χ ψ(P)

+O(h∞)+O(e−Cth−K).
[2.27]

Here, ΠEα is the spectral projection given by [2.19].

REMARK 2.3.– We see in theorem 2.6 that χΠEα χ ∼ h−|α |−n/2 when E0
α is simple.

Since, on the other hand, |e−itEα/h|= e−t| ImEα |/h ∼ e−t ∑n
j=1 λ j(α j+

1
2 ) for Eα ∈ Res(h)∩

D(E0,Ch), the α-th term of the RHS of [2.27] is greater than the errors for

t ≥ K − n
2 −|α|

C−∑n
j=1 λ j(α j +

1
2 )

ln
1
h
+ const. [2.28]

REMARK 2.4.– If {λ j}n
j=1 are Z-independent, all the pseudo-resonances are simple

and [2.27] holds for any C.
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2.3.2. Resonance-free zone for homoclinic trajectories

Here, we assume, instead of (B2), that K(E0) consists of the fixed point (0,0) and
homoclinic trajectories associated with this point. More precisely,

(B3) K(E0) = Λ+∩Λ− and H := Λ+∩Λ−\{(0,0)} 2= /0.

This is the case when there is another suitably shaped bump higher than E0. Note
that there may be infinitely many homoclinic trajectories (see example 2.2).

When the dimension is 1 and the potential is analytic, the operator P−E can be
reduced microlocally near (0,0) to the Weber equation [2.6], see [HEL 89]. This fact
combined with the complex WKB method lead us to the following result:

THEOREM 2.8.– [FUJ 98, theorem 0.7]– Assume n = 1, (A1), (B1), (B3), H consists
of a unique curve and V (x) is globally analytic near R. Then, the resonances in the
disc centered at E0 with radius Ch/| lnh| with C > 0 satisfy

Ek = E0 −λ1
S0 − (2k+1)πh

| lnh| − i
ln2
2

λ1
h

| lnh| +O(h/| lnh|2),

where S0 =
"
H ξ · dx is the action along the homoclinic curve H and k ∈ N. In

particular,

ImEk =− ln2
2

λ1
h

| lnh| +O(h/| lnh|2).

Let us consider the multidimensional case. To apply theorem 2.3, we need an
assumption corresponding to (A3):

(B4) g(x) ·g(x7) 2= 0 for any x,x7 ∈ ΠxH .

When there is only one homoclinic trajectory, this condition requires that the
homoclinic trajectory should reach the barrier top in the direction of the minimum
curvature. When the barrier top is isometric and there are many homoclinic
trajectories as in example 3.14, this condition requires θ1 < π/4.

We will see that the imaginary part of resonances depends on the “strength” of the
trap. We start with a case where the trapping is weak:

(B5) Either (B5)a) or (B5)b) holds:

a) λ1 < λn;



34 Nonlinear Physical Systems

b) ∀ρ ∈ H , Tρ Λ+ 2= Tρ Λ−.

Assumption (B5)a) means that H is small near the fixed point (0,0) in the sense
that x-space projection of every Hamilton curve in H is tangent to a subspace of T0Rn

of dimension ≤ n−1.

THEOREM 2.9.– [BON]– Assume (A1), (B1), (B3), (B4) and (B5). Then, there exists
δ > 0 such that, for all C > 0, P has no resonance in

[E0 −Ch,E0 +Ch]+ i[−δh,0], [2.29]

for sufficiently small h. Moreover, for all χ ∈ C∞
0 (Rn), there exists M > 0 such that

for any E in this domain, we have

;;χ(E −P)−1χ
;;� h−M.

Next, we consider the complementary case where the trapping is strong. We
assume an isotropic condition on the barrier top:

(B6) λ1 = · · ·= λn =: λ .

In this special setting, proposition 2.2 about the Hamiltonian flow on Λ± can be
expressed as follows:

LEMMA 2.1.– For any α ∈ Sn−1, there exists a unique Hamiltonian curve ρ+(t,α) =
(x+(t,α),ξ+(t,α)) on Λ+ such that, for any ε > 0,

x+(t,α) = eλ tα +O
%
e(2λ−ε)t, as t →−∞.

Then, we define

Htang := {ρ ∈ H ; Tρ Λ+ = Tρ Λ−},

the set of the points at which Λ+ and Λ− are tangent, and

H ∞ := {α ∈ Sn−1; ρ+(·,α) ∈ H },
H ∞

tang := {α ∈ Sn−1; ρ+(·,α) ∈ Htang},

the asymptotic directions of the Hamiltonian curves in H and Htang. Note that these
two sets are compact subsets of Sn−1.
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Let α ∈ H ∞
tang. For any sufficiently small ε > 0, there exist unique times tε±(α)

satisfying |x+(tε±(α),α)|= ε and tε±(α)→∓∞ as ε → 0. Then, it is well known that
the quantity

Mε(α) =
D(tε

+(α),α)

D(tε−(α),α)
with D(t,α) =

3<<<det
∂x+(t,α)

∂ (t,α)

<<<,
represents the evolution of the amplitude of WKB solutions along the curve x+(t,α)
from the time tε

+(α) to the time tε−(α) (see, for example, [MAS 81]). This function
Mε(α) has a positive limit M0(α) as ε tends to 0

M0(α) := lim
ε→0

Mε(α), [2.30]

which is continuous with respect to α ∈ H ∞
tang and hence bounded. We also define a

constant associated with the quantum propagation through the fixed point:

J0(α) := (2π)−n/2Γ
#n

2

*!
H ∞

tang

|α ·ω|−n/2dω. [2.31]

The amplification around the trapped set is then controlled by the quantity

A0 := max
α∈H ∞

tang

M0(α)J0(α) ∈ [0,+∞[. [2.32]

REMARK 2.5.– In the one-dimensional case, H ∞ = H ∞
tang ⊂ {−1,1} and, for each

α ∈ H ∞, we have

M0(α) = 1, J0(α) =

⎧⎪⎪⎨⎪⎪⎩
0 if H ∞ = /0,

1/
√

2 if H ∞ = {1} or {−1},
√

2 if H ∞ = {−1,1}.
[2.33]

THEOREM 2.10.– [BON]– Assume (A1), (B1), (B3), (B4), (B6) and

A0 < 1. [2.34]

Then, for all ε > 0, there exists ν > 0 such that P has no resonance in the box

[E0 −νh,E0 +νh]+ i
�%

λ lnA0 + ε
, h
| lnh| ,0

�
, [2.35]
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for sufficiently small h. Moreover, for all χ ∈C∞
0 (Rn), there exists a positive constant

M such that, for any E in this domain, we have

;;χ(P−E)−1χ
;;� h−M, [2.36]

for sufficiently small h.

When A0 = 0, we use the convention that ln(A0) appearing in [2.35] can be taken
as any arbitrary large negative constant. We refer to [BON] for a result in a larger zone.

EXAMPLE 2.1.– Consider the case n = 1. Because of remark 2.5, condition [2.34]
is satisfied if H ∞ consists of one point but not satisfied if H ∞ = {−1,1}. When
H ∞ = {1} or H ∞ = {−1}, the precise location of the resonances is given in theorem
2.8. This result implies that our estimate [2.35] from below the imaginary part of the
resonances is optimal. When H ∞ = {−1,1}, on the contrary, we are in the “well in
an island” situation, and the resonances are exponentially close to the real axis.

V (x)

0

{V (x) = E0}

0 2θ0 π(H )

Figure 2.3. The potential of example 2.1 and the spatial projection of H

EXAMPLE 2.2.– In dimension n = 2, let (r,θ) be the polar coordinates. We consider

V (x) = q0(r)+q1(r−a)ψ(θ),

where the q•(r)’s are even non-degenerate bumps in C∞
0 (R) with rq7•(r) < 0 for r 2=

0 and E0 = q0(0) < q1(0), a is a sufficiently large constant such that suppq0(r)∩
suppq1(r− a) = /0 and ψ(θ) ∈ C∞

0 ([−θ1 − ε,θ1 + ε]) is equal to 1 for |θ | ≤ θ1 and
θψ 7(θ) < 0 for θ1 < |θ | < θ1 + ε for θ1 < π/4 and small enough ε > 0. The setting
is illustrated in Figure 2.3. It can be checked that conditions (A1), (B1), (B3), (B4)
and (B6) are all satisfied, and, moreover, H ∞ = H ∞

tang = [−θ1,θ1] and M0(α) = 1.
J0(α) can also be computed explicitly, and condition [2.34] is satisfied if sin(2θ1)<
tanh(2π).

We conclude this review by sketching the proofs of theorems 2.9 and 2.10. For the
detail, we refer to [BON]. Assuming that there existed a resonance in the expected
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resonance-free domain [2.29] or [2.35], we would conclude that the corresponding
normalized resonant state becomes smaller microlocally at any point on H after a
continuation along homoclinic trajectories and the fixed point.

For the continuation along the homoclinic trajectories, we use the standard WKB
theory of Maslov, which states, in particular, that the order in h of the amplitude of
WKB solutions does not change along Hamiltonian flow.

For the continuation through the fixed point, we apply the results in section 2.2.
We first show that the resonant state has its microsupport only on Λ+. In particular,
this implies that it is microlocally 0 on Λ− outside H . Hence, theorem 2.5 gives us its
asymptotic behavior on Λ+∩H from the knowledge of that on Λ+∩H . In the case
of theorem 2.9, the amplitude of the resonant state changes by multiplication by hα

for some α > 0, which comes from the prefactor hS(z)/λ1 in [2.15] when (B5)a) holds
and from a stationary phase expansion of the integral in [2.15] when (B5)b) holds.
In the case of theorem 2.10, the amplitude changes only by the multiplication by a
small constant independent of h, therefore we need the explicit expression [2.18] of
the principal symbol.
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