Oleg N. Kirillov
NONCONSERVATIVE STABILITY PROBLEMS OF MODERN PHYSICS
This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics.

It deals with both finite- and infinite-dimensional nonconservative systems and covers the fundamentals of the theory, including such topics as Lyapunov stability and linear stability analysis, Hamiltonian and gyroscopic systems, reversible and circulatory systems, influence of structure of forces on stability, and dissipation-induced instabilities, as well as concrete physical problems, including perturbative techniques for nonself-adjoint boundary eigenvalue problems, theory of the destabilization paradox due to small damping in continuous circulatory systems, Krein-space related perturbation theory for the MHD kinematic mean field α^2-dynamo, analysis of Campbell diagrams and friction-induced flutter in gyroscopic continua, non-Hermitian perturbation of Hermitian matrices with applications to optics, and magnetorotational instability and the Velikhov-Chandrasekhar paradox.

The book serves present and prospective specialists providing the current state of knowledge in the actively developing field of nonconservative stability theory. Its understanding is vital for many areas of technology, ranging from such traditional ones as rotor dynamics, aeroelasticity and structural mechanics to modern problems of hydro- and magnetohydrodynamics and celestial mechanics.

Oleg N. Kirillov, Helmholtz-Zentrum Dresden-Rossendorf, Germany.
Contents

Preface vii

1 Introduction 1

1.1 Gyroscopic stabilization on a rotating surface 1
1.1.1 Brouwer’s mechanical model 2
1.1.2 Eigenvalue problems and the characteristic equation 2
1.1.3 Eigencurves and bifurcation of multiple eigenvalues 4
1.1.4 Singular stability boundary of the rotating saddle trap 8

1.2 Manifestations of Brouwer’s model in physics 10
1.2.1 Stability of deformable rotors 10
1.2.2 Foucault’s pendulum, Bryan’s effect, Coriolis vibratory
 gyroscopes, and the Hannay–Berry phase 15
1.2.3 Polarized light within a cholesteric liquid crystal 16
1.2.4 Helical magnetic quadrupole focussing systems 17
1.2.5 Modulational instability 19

1.3 Brouwer’s problem with damping and circulatory forces 24
1.3.1 Circulatory forces 25
1.3.2 Dissipation-induced instability of negative energy modes 25
1.3.3 Circulatory systems and the destabilization paradox 27
1.3.4 Merkin’s theorem, Nicolai’s paradox, and subcritical flutter 28
1.3.5 Indefinite damping and parity-time (\mathcal{PT}) symmetry 30

1.4 Scope of the book .. 33

2 Lyapunov stability and linear stability analysis 36

2.1 Main facts and definitions 37
2.1.1 Stability, instability, and uniform stability 38
2.1.2 Attractivity and asymptotic stability 38
2.1.3 Autonomous, nonautonomous, and periodic systems 39

2.2 The direct (second) method of Lyapunov 40
2.2.1 Lyapunov functions 40
2.2.2 Lyapunov and Periskidskii theorems on stability 40
2.2.3 Chetaev and Lyapunov theorems on instability 41

2.3 The indirect (first) method of Lyapunov 42
2.3.1 Linearization ... 43
4.3.2 Multiple parameter families of circulatory systems 98
4.3.3 Generic singularities on the stability boundary 99

4.4 Perturbation of eigenvalues 101
4.4.1 Simple eigenvalue .. 102
4.4.2 Double eigenvalue of geometric multiplicity 1 103
4.4.3 Double eigenvalue of geometric multiplicity 2 105
4.4.4 Triple eigenvalue of geometric multiplicity 1 106

4.5 Geometry of the stability boundary 108
4.5.1 Linear and quadratic approximations at smooth points 108
4.5.2 Singularities in two-parameter circulatory systems 110
4.5.3 Example. Stabilization of comfortable walking 114
4.5.4 Singularities in three-parameter circulatory systems 117
4.5.5 The cone $\alpha\alpha$ and Merkin’s instability theorem 124
4.5.6 Example: a brake disk in distributed frictional contact 126
4.5.7 Example: stability of an airfoil in an inviscid flow 129

4.6 Eigencurves, their crossing and veering 133
4.6.1 Convex flutter domain: conical point $\alpha\alpha$ 133
4.6.2 Convex/concave flutter domain: smooth points α^2 134

4.7 Parametric optimization of circulatory systems 138
4.7.1 Example: optimization of Ziegler’s pendulum 139
4.7.2 A nonsmooth and nonconvex optimization problem 141
4.7.3 The gradient of the critical load 142
4.7.4 An infinite gradient at the crossing of the eigencurves 143
4.7.5 Improving variations and necessary conditions for optimality
in the case where the eigencurves cross 143

5 Influence of structure of forces on stability 146

5.1 Undamped potential systems 147
5.1.1 Lagrange’s theorem and Poincaré instability degree 148
5.1.2 Rayleigh’s theorem on movement of eigenvalues 148
5.1.3 Steady-state bifurcation 148

5.2 Damped potential systems 149
5.2.1 Overdamped and heavily damped systems 150
5.2.2 Indefinitely damped systems 154

5.3 Undamped gyroscopic systems 160
5.3.1 Extension of Rayleigh’s theorem 161
5.3.2 Criteria of gyroscopic stabilization 161

5.4 Damped gyroscopic systems 162
5.4.1 Kelvin–Tait–Chetaev theorem 163
5.5 Circulatory systems with and without velocity-dependent forces 164
5.5.1 Merkin’s theorem and Bulatovic’s flutter condition 165
5.5.2 Bottema–Lakhadanov–Karapetyan theorem 166
5.5.3 Stabilizing and destabilizing damping configurations 167

6 Dissipation-induced instabilities ... 171
6.1 Crandall’s gyropendulum ... 171
6.1.1 Conservative gyroscopic stabilization and its destruction by stationary damping ... 172
6.1.2 Singular threshold of the nonconservative gyroscopic stabilization ... 173
6.1.3 Imperfect Krein collision and exchange of instability between negative and positive energy modes ... 174
6.2 Gyroscopic stabilization of nonconservative systems 176
6.2.1 The case of $m = 2$ degrees of freedom 177
6.2.2 The case of arbitrary even m 184
6.3 Near-Hamiltonian systems ... 188
6.4 Gyroscopic and circulatory systems as limits of dissipative systems . 190

7 Nonself-adjoint boundary eigenvalue problems 200
7.1 Adjoint boundary eigenvalue problems 202
7.2 Perturbation of eigenvalues ... 204
7.2.1 Semisimple eigenvalues ... 205
7.2.2 Multiple eigenvalues with the Keldysh chain 207
7.2.3 Higher order perturbation terms for double nonderogatory eigenvalues ... 209
7.2.4 Degenerate splitting of double nonderogatory eigenvalues ... 211
7.3 Example: a rotating circular string with an elastic restraint 213
7.4 Example: the Herrmann–Smith paradox 217
7.4.1 Formulation of the problem ... 217
7.4.2 Stationary flutter domain and mobile divergence region 220
7.4.3 Sensitivity of the critical flutter load to the redistribution of the elasticity modulus ... 222
7.5 Example: Beck’s column loaded by a partially follower force 223
7.5.1 The stability-divergence boundary (point A) 225
7.5.2 The flutter threshold of Beck’s column (point C) 226
7.5.3 The singularity 0^2 on the stability boundary (point B) 230
8 Destabilization paradox in continuous circulatory systems

8.1 Movement of eigenvalues under a velocity-dependent perturbation
8.1.1 Generalized boundary eigenvalue problem
8.1.2 Variation of parameters that is transversal to the stability boundary
8.1.3 Variation of parameters that is tangential to the stability boundary
8.1.4 Transfer of instability between modes
8.1.5 Drop in the critical frequency

8.2 Singular threshold of the flutter instability
8.2.1 Drop in the critical flutter load
8.2.2 The “no drop” condition and the tangent cone to the domain of asymptotic stability

8.3 Example: dissipation-induced instability of Beck’s column
8.3.1 Beck’s column without damping
8.3.2 Beck’s column with Kelvin–Voigt and viscous damping
8.3.3 Viscoelastic Beck’s column with a dash-pot
8.3.4 Ziegler’s pendulum with a dash-pot

8.4 Application to finite-dimensional systems
8.4.1 The destabilization paradox in Ziegler’s pendulum

9 MHD kinematic mean field α^2-dynamo

9.1 Eigenvalue problem for α^2-dynamo

9.2 Uniform α-profiles generate only nonoscillatory dynamos
9.2.1 Conducting exterior: self-adjointness in a Krein space
9.2.2 Basis properties of eigenfunctions
9.2.3 Spectral mesh of eigencurves
9.2.4 Deformation of the spectral mesh via transition from conducting to insulating surrounding

9.3 Nonhomogeneous α-profiles and the conducting exterior
9.3.1 $l \geq 0$: definite Krein signature prohibits formation of complex eigenvalues
9.3.2 $l = 0$: oscillating solutions from the repeated decaying modes with mixed Krein signature
9.3.3 $l = 0$: Fourier components of $\alpha(x)$ determine the unfolding pattern of the spectral mesh

9.4 Insulating boundary conditions induce unstable oscillations
9.4.1 $l = 0$: complex unfolding of double eigenvalues with definite Krein signature
10 Campbell diagrams and subcritical friction-induced flutter 294

10.1 Friction-induced vibrations and sound generation 294

10.2 Example. Subcritical flutter of a rotating circular string 297

10.3 Axially symmetric rotor with anisotropic stator 304

10.3.1 Sensitivity analysis of the Campbell diagram 307

10.3.2 MacKay’s eigenvalue cones and instability bubbles 309

10.3.3 Double-coffee-filter singularity near the crossings with
definite Krein signature ... 312

10.3.4 Unfolding MacKay’s cones with mixed Krein signature 316

10.3.5 Indefinite damping as a reason for subcritical flutter 317

10.3.6 Destabilizing role of circulatory forces 320

10.4 Example: eigenvalue surfaces of the rotating circular string 323

10.5 How to play a disk brake? 327

11 Non-Hermitian perturbation of Hermitian matrices 329

11.1 Eigenvalue movement through a 1:1 resonance in complex matrices 332

11.1.1 Diabolical point (DP): passing of eigenvalues 333

11.1.2 Exceptional point (EP): splitting of eigenvalues 334

11.2 Eigensurfaces associated with DPs 335

11.2.1 Complex perturbation of a Hermitian matrix family 336

11.2.2 DP in the spectrum of real symmetric matrices 337

11.2.3 How a DP unfolds into the conical wedge of Wallis 337

11.2.4 Inflating the diabolical point into an exceptional ring 341

11.2.5 Example: flutter instability in granular flow 342

11.3 Unfolding conical singularities in crystal optics 344

11.3.1 DPs in Hamilton’s conical refraction 345

11.3.2 Approximation of the dispersion surface near a DP 347

11.3.3 Eigensurfaces of absorption- and chirality-dominated crystals 347

11.4 Eigensurfaces associated with EPs 350

11.5 Perturbation of eigenvectors and Berry phase 355

11.5.1 Hermitian case: geometric phase around a DP 355

11.5.2 Non-Hermitian case: geometric phase around an EP 357

11.5.3 Geometric phase around an EP in a microwave cavity 360

12 Magnetorotational instability 364

12.1 Magnetorotational instability in axial and helical magnetic fields . 364

12.1.1 Cylindrical Couette–Taylor flow 364

12.1.2 Paradox of Velikhov and Chandrasekhar 367
References

References

References

References

References

References

Kimball, noted G. E. physicist, dies suddenly, *Schenectady Gazette* (March 22, 1943), 1,8.

References

References

References

References

References

Index

absolute instability, 93, 313
absorption-dominated crystal, 348
accelerator physics, 13
acoustic tensor, 342
acoustics of friction, 126, 294
adjoint boundary conditions, 204
adjoint boundary eigenvalue problem, 204
adjoint differential expression, 203
aircraft flutter, 233
Alfvén frequency, 369
algebraic multiplicity, 4, 47, 73
anti-unitary symmetry, 95
Arnold, V. I., viii, 233
associated element, 73
associated vector, 77
asymptotic stability, 22, 39, 240
attractive equilibrium, 39
automotive brake squeal, 126
autonomous dynamical system, 39, 304
avoided crossing, 13, 80, 215, 278
backward wave, 90
Balbus, S. A., 364
Barnett, S., 147
baroclinic instability, 233
Beck’s column, 202, 234
Beletsy, V. V., 146
Benjamin-Feir instability, 19
Berry phase, 16, 356
Berry, M. V., 356
Bespalov-Talanov instability, 19
betatron, 267
bifurcation diagram, 99
Bilharz criterion, 61, 382
Bilharz, H., 61
bilinear form, 72
Binding, P., 266
binormal, 346
biradial, 346
Bloch function, 53
Bloch wave, 53
Bolotin, V. V., vii, 233
Bottema, O., viii, 28, 62, 233
Bottema-Lakhadanov-Karapetyan theorem, 166, 197, 300
boundary conditions, 203
boundary form, 202
Braginsky, S. I., 364
branch cut, 314, 354, 361
Brillouin zone, 53
Brouwer, L. E. J., 1, 10
Brouwer’s particle in a rotating vessel, 1, 52
Bryan, G. H., 11
Bryan’s effect, 11
bubble of instability, 13, 80, 133, 135, 215, 278, 296
Bulatovic, R. M., 125, 150
Bulatovic’s flutter condition, 125, 166
calender barring, 98, 294
Campbell, W., 13
Campbell diagram, 13, 200, 295
canonical equation, 75
Chandrasekhar, S., viii
characteristic equation, 3
characteristic exponent, 44
Chetaev, N. G., 42, 163
Chetaev instability theorem, 42
Chetaev–Malkin–Massera criterion, 46
chirality, 17, 53, 267
chirality-dominated crystal, 348
circular polarization, 10
circulatory forces, 25, 97, 146, 172, 267, 295
circulatory system, 27, 97, 146, 234
codimension, 63, 72, 337
coefficient of irregularity, 45
combination parametric resonance, 215, 310
combination parametric resonance of difference type, 305
combination parametric resonance of summation type, 216
comfortable walking, 115
companion matrix, 58
complete spectrum of a linear system, 45
condition number of an eigenvalue, 208
correlation wedge of Wallis, 329, 340
conservation law, 92
conservative forces, 97
convective instability, 93, 313
Coriolis force, 11
Coriolis vibratory gyroscope, 10
Couette, M., 364
Couette–Taylor flow, 333, 364
coupled parametric oscillators, 51
Crandall, S. H., 171
Crandall’s gyropendulum, 171
critical load functional, 142
critical rotor speed, 296
crossing of eigencurves, 132
curl force, 267
cuspidal edge, 118
cuspidal point, 6, 112, 248
CVG, 10
damping forces, 146, 172
De Laval, K., 12
decrescent function, 40
defect (of an eigenvalue), 6
defective eigenvalue, 6
definite Krein signature, 14, 77, 274
Demidovich, B. P., 44
deformation, 37
deviator, 97
diabolical point, 1, 21, 202, 216, 311, 333
differential expression, 202
discriminant, 151, 386
discriminant matrix, 164
discriminant sequence, 164
dispersion, 53
dispersion curve, 53, 92
dispersion relation, 36, 53, 92, 377
dissipation-induced instabilities, 24, 97
divergence, 5, 78, 98, 148
domain of attraction of an equilibrium, 39
double-coffee-filter, 315, 340, 349
double refraction, 330
DRESODYN experiment, 68
drop in the critical flutter frequency, 244
drop in the critical flutter load, 246
dynamic materials, 312
eigencurve, 53, 83, 128, 133, 200, 215, 295, 331
eigenelement, 201
eigensurface, 331
eigenvalue, 3, 73
eigenvalue assignment, 309
eigenvalue problem, 3
eigenvector, 3
elastoplastic continuum, 342
equilibrium, 2, 38
Erugin, N. P., 49
Erugin theorem, 49
Evans–Krein function, 83
exceptional point, 1, 28, 31, 136, 202, 216, 283, 312, 331, 334, 357
exceptional ring, 342
extended Beck’s problem, 223
external conical refraction, 347
external damping, 25
Föppl, A., 10
fast precession, 176
first Lyapunov instability theorem, 42
Floquet, G., 50
Floquet exponent, 50
Floquet factor, 50
Floquet multiplier, 50
Floquet representation theorem, 50
fluid–structure interaction, 233
flutter, 6, 78, 98
flutter condition, 208
flutter domain, 80, 216
flutter ill-posedness, 342
follower force, 25, 97, 128, 139
follower torque, 128
forward wave, 90
Foucault pendulum, 12, 15
fractional derivative, 237
Franklin, B., 294
Freitas, P., 152, 155
Fresnel’s equation of wave normals, 345
Fresnel’s wave surface, 346
friction-induced instabilities, 126
Frobenius matrix, 58
full observability, 58, 149
fundamental matrix, 43
fundamental symmetry, 72
Galilei, G., 294
Gallina criterion, 139, 165
Gamow state, 357
general nonconservative system, 146, 171
generalized coordinates, 76
generalized eigenvector, 6
generalized momenta, 76
generator of a ruled surface, 63, 329
generic singularity, 63
geometric multiplicity, 6, 47, 332
geometric phase, 16, 357, 359
geometrical optics expansions, 373
glass harmonica, 294
Gram matrix, 78
granular flow, 342
Greenhill, A. G., 29, 67, 128
gyrator, 30
gyroscopic force, 17, 87, 146
gyroscopic pendulum, 171
gyroscopic stabilization, 5, 26, 67, 161
gyroscopic system, 14, 88, 146
Hagedorn, P., 161
Hahn, W., 38
Hamilton’s conical refraction, 330
Hamiltonian, 76
Hamiltonian equation, 75
Hamiltonian system, 14
Hamiltonian–Hopf bifurcation, 6, 78, 96
Hannay’s angle, 16
heavily damped system, 150, 275, 296
helical MRI, 370
hereditary damping, 237
Hermite, Ch., 60
Hermite’s criterion for asymptotic stability, 60
Hermite’s matrix, 59
Herrmann-Smith paradox, 217
homogenization, 53
Hurwitz determinants, 57
Hurwitz matrix, 57
Hurwitz polynomial, 60
Huseyin, K., 161
imperfect merging of modes, 31, 173, 242, 352
indefinite damping, 21, 31, 152, 154, 181, 294
indefinite metric, 70, 72
inertia forces, 146
inertia of a matrix, 57
inertial circle, 53
inertial oscillations, 7
inertial wave, 7, 371, 380
infinitesimally symplectic matrix, 14
instability, 38
instability degree, 82
internal conical refraction, 331, 346
internal damping, 25
Ioshizawa, T., 39
Ioshizawa Theorem, 39
isoperimetric constraint, 140
\(J \)–selfadjoint operator, 73
Jacobian matrix, 43
Jeffcott, H., 10
Jeffcott rotor, 10, 26
Jellett’s egg, 67
Jordan block, 47
Jordan canonical form, 47
Jordan chain, 6, 73
Kármán, Th. von, 10
Kalman, R. E., 59
Kapitsa, P. L., 126
Keldysh, M. V., viii
Keldysh chain, 6, 207
Kelvin, W., 1, 36, 67, 163
Kelvin–Tait–Chetaev theorem, 26, 91, 163
Kelvin–Voigt damping, 234
Kharitonov, V. L., 62
Kharitonov theorem, 61, 62
‘kidneys’, 355
Kimball, A. L., 25
kinematic dynamo, 266
kinetic energy, 88, 96
Kozlov, V. V., 82
Krein collision, 6, 78, 201
Krein signature, 14, 76, 311
Krein space, 73, 271
Krein, M. G., viii, 73, 76
Krein–Gelfand–Lidskii theorem, 87
Lagrange formula, 203
Lagrange’s stability theorem, 148
Lagrangian, 96
Lagrangian system, 96
Lamb, H., 26
Lancaster, P., 150
Lavrent’ev, M. A., 68
Levantovskii, L. V., 110
Leverrier, U., 36, 55
Leverrier–Barnett algorithm, 147, 177
Leverrier–Faddeev algorithm, 55
Lewin, M., 56
Lewin’s formula, 56
Lidskii, V. B., ix
Liénard–Chipart criterion, 61, 377
linear, 72
linear stability, 3, 82
linearization, 43
Lippmann, G., 364
LRC circuit, 156
Lyapunov, A. M., 37
Lyapunov functions, 40
Lyapunov inequality, 44
Lyapunov matrix, 49
Lyapunov reducibility theorem, 50
Lyapunov regularity, 45
Lyapunov stability, 38, 82
Lyapunov theorem on stability, 41
Lyapunov theorem on uniform asymptotic stability, 41
Lyapunov transformation, 49
Lyusternik, L. A., ix
MacKay, R. S., 67
MacKay’s eigenvalue cone, 13, 80, 310
MacKay’s formula, 189
Maddocks, J. H., 76
magnetic Prandtl number, 367
magneto-Coriolis wave, 371, 380
magnetohydrodynamics, 266
Malkin, I. G., 39
marginal stability, 3
matrix Lyapunov equation, 54
matrix polynomial, 3
Maxwell, J. C., 36
Merkin’s theorem, 29, 126, 165
Merkin, D. R., 165, 166
metamorphoses of the eigencurves, 134
MHD, 266
MHD dynamo, 68, 266
microwave cavity, 360
mixed Krein signature, 14, 77, 274
modulational instability, 19, 233
monochromatic wave, 19, 344
monodromy matrix, 50
motion, 37
Motzkin–Taussky theorem, 84
Müller, P. C., 56, 59
Müller’s formula, 56, 59
multiparameter eigenvalue problem, 53, 83, 91
multiplicity of the characteristic exponent, 44
near-Hamitonian system, 188
negative definite function, 40
negative energy mode, 27, 89, 175, 367
negative Krein signature, 76
negative semidefinite function, 40
Newton–Puiseux series, 208
Nicolai, E. L., 29, 128
Nicolai’s paradox, 29, 128
NLS, 19
NLS, dissipatively perturbed, 20
nonautonomous dynamical system, 39
noncommuting limits, 378
nonconservative forces, 25, 146
nonconservative positional forces, 97, 125, 295
nonderogatory eigenvalue, 66, 207
nonderogatory matrix, 66
nonequilibrium thermodynamics, 97
nonholonomic systems, 98
nonlinear Schrödinger equation, 19
nonoscillatory instability, 201
nonselfadjoint boundary eigenvalue problem, 200, 204, 234
nonsemisimple 1 : 1 resonance, 6, 27, 78
nonsmooth and nonconvex optimization, 64
normal fundamental matrix, 44
observability index, 58
observability matrix, 58
Onsager, L., 97
optic axis, 331, 345
orthogonal projector, 72
oscillatory damped system, 146, 155
oscillatory instability, 98, 201
Ostrowski, A., 57
Ostrowski--Schneider inertia theorem, 58
overdamped system, 150
overlapping of eigencurves, 132
paradox of inductionless HMRI, 371
parametric resonance, 19
parity, 30
Parks, P. C., 59
partially follower force, 223
passing, 7, 78
Paul trap, 18
Pedersen, P., 200
periodic dynamical system, 39
Perron, O., 45
Perron’s regularity test, 45
Persidskii, K. P., 38
Persidskii theorem on uniform stability, 41
phase velocity, 344
Plücker, J., 32, 331
Plücker conoid, 32, 198, 379
Poincaré instability degree, 88, 148
point spectrum, 74
Pontryagin, L. S., viii, 74
Pontryagin space, 73
Pontryagin’s theorem, 74
positional forces, 146
positive definite function, 40
positive energy mode, 89, 175, 367
positive Krein signature, 76
positive semidefinite function, 40
potential energy, 88, 96
potential forces, 97, 146
potential forces of hyperbolic type, 97, 125
potential forces of spherical type, 97, 125
potential system, 146
Prandtl, L., 10
principal parametric resonance, 215, 310
principle of exchange of stabilities, 201, 268
PROMISE experiment, 370
pseudo-gyroscopic force, 97
PT-symmetry, 21, 31, 156
quadratic form, 72
quasilinear system, 43
Rabinovich, B. I., 67
Rankine, W. J. M., 10
Rayleigh quotient, 184
Rayleigh’s criterion, 365
Rayleigh’s theorem, 81, 148, 161
reducible system, 49
reflected wave, 91
regular perturbation, 205, 237
resolvent set, 73
resonance tongue, 216
Reut’s column, 227
reversible 1 : 1 resonance, 96
reversible Hopf bifurcation, 27, 96
reversible system, 95
rhodonea curve, 15
rigidity of a potential system, 148
Robin boundary conditions, 268
robust Hurwitz stability, 61
root element, 73
root lineal, 73
root subspace, 74
Rossby, K.-G. A., 369
Rossby number, 11, 369
rotating damping, 25, 171
rotating saddle trap, 6
Routh, E. J., 36
Routh–Hurwitz criterion, 22, 60
ruled surface, 62, 182, 329

Saffman, P. G., 67
Schneider, H., 57
second Lyapunov instability theorem, 42
secular term, 6
selfadjoint boundary eigenvalue problem, 204
selfadjoint operator, 72
semisimple 1 : 1 resonance, 333
semisimple eigenvalue, 7, 49, 78
sensitivity analysis, 200, 201
Seyranian, A. P., 110
shimmy, 98
shipwright’s circular wedge, 329
Shkalikov, A. A., 72
simple eigenvalue, 5
singular axis, 348, 354
slow precession, 176
slowness surface, 346
slowness vector, 346
Smith, D. M., 12, 25
Smith’s rotor, 25, 52
Sobolev, S. L., viii, 68
Sobolev’s top, 68
soliton, 19
spectral abscissa, 63, 64, 151
spectral mesh, 200, 214, 273, 295
spectral parameter, 3, 332
spectral stability, 3, 165
spectrum, 73
splitting, 7, 78
Spurr, R. T., 294
stability by linearization, 43
stability degree, 82
stability diagram, 100
standard MRI, 370
Starzhinskii, V. M., 81
state transition matrix, 44
static instability, 5, 98
stationary damping, 25, 171
steady-state bifurcation, 78, 96, 148
Stokes, G. G., 36
strong stability, 86
structural instability, 64, 233
subcritical rotor speed, 296
supercritical instability, 25
supercritical rotor speed, 296
swallowtail, 124, 154
Sylvester criterion, 60
symplectic matrix, 75
symplectic signature, 14, 311
Tait, P. G., 163
tangent cone, 65, 110, 158, 169, 240
tellegen, B. D. H., 30, 345
Thomson, W., 1, 36
time reversal, 27, 30, 95, 356
tippe-top, 185
topological phase, 357, 359, 361
transfer of instability between modes, 182, 243
transport equations, 375
transversal intersection, 112
trapping, 5
trihedral spike, 122, 153
uniform asymptotic stability, 39
uniform stability, 38
uniformly attractive equilibrium, 39
unperturbed motion, 37
veering of eigencurves, 13, 80, 132, 133, 278
Velikhov, E. P., viii, 364
Velikhov–Chandrasekhar paradox, 367
velocity-dependent forces, 146, 242
versal deformation, 121
Veselic, K., 162
viaduct, 315, 340, 349
Vishik, M. I., ix
Volkmer, H., 266
Walker, J. A., 168
walking robot, 114
Wallis, J., 329
wave inertia effect, 11
whirling, 10
Whitney umbrella, 23, 28, 63, 154, 169, 174, 182, 233, 353
Williamson’s normal form, 89
Wimmer, H. K., 58, 149
Wimmer’s theorem, 58
Winkler elastic foundation, 217
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakubovich, V. A.</td>
<td>81</td>
</tr>
<tr>
<td>Zajac, E. E.</td>
<td>163</td>
</tr>
<tr>
<td>Zevin, A. A.</td>
<td>82</td>
</tr>
<tr>
<td>Zhuravlev, V. F.</td>
<td>161</td>
</tr>
<tr>
<td>Ziegler, H.</td>
<td>viii, 97, 128, 233</td>
</tr>
<tr>
<td>Ziegler’s paradox</td>
<td>28, 168</td>
</tr>
<tr>
<td></td>
<td>Ziegler’s pendulum, 97, 139</td>
</tr>
<tr>
<td></td>
<td>Ziegler’s pendulum with a dash-pot, 259</td>
</tr>
<tr>
<td></td>
<td>Ziegler’s principle of maximum entropy</td>
</tr>
<tr>
<td></td>
<td>production, 97</td>
</tr>
<tr>
<td></td>
<td>Ziegler–Bottema destabilization paradox,</td>
</tr>
<tr>
<td></td>
<td>28, 97, 168, 188, 233, 262</td>
</tr>
</tbody>
</table>